助推節(jié)省燃料的汽車啟動 / 停止電子系統(tǒng)
背景
本文引用地址:http://www.ex-cimer.com/article/127661.htm許多汽車制造商設(shè)計了一種節(jié)省汽車燃料的巧妙方法,就是運用了被稱為“啟動 / 停止”系統(tǒng)的新概念。該系統(tǒng)在汽車處于停頓狀態(tài)或空檔位置時將自動關(guān)閉引擎,并在駕駛者再次踩壓離合器踏板時立即重新起動引擎。自動啟動 / 停止功能可在汽車每次完全停穩(wěn)時 (例如:等候交通信號燈) 關(guān)閉引擎,并自動重新發(fā)動引擎,因而有助于減少燃料消耗及尾氣排放。與未裝備此類系統(tǒng)的汽車相比,在城市交通環(huán)境中其耗油量的節(jié)省幅度可高達 8%。還有一個額外的好處就是能夠降低其二氧化碳排放量。
原理很簡單:如果引擎不運轉(zhuǎn),就不會消耗燃料。當不需要引擎工作時,自動啟動 / 停止系統(tǒng)功能將自動關(guān)閉引擎。在交通擁堵或者甚至在走走停停的交通狀況下,只需將汽車置于空檔位置并把腳從離合器上移開就將啟動此項功能。信息顯示器上的一條“啟動 / 停止”消息將表示“引擎已被關(guān)閉”。如欲重新發(fā)動引擎,則踩下離合器、掛檔,汽車將馬上快速恢復(fù)工作狀態(tài),即刻就能繼續(xù)行駛。
應(yīng)當指出的是:自動啟動 / 停止功能并不會影響駕駛的舒適性和安全性。比如,在引擎達到某個理想的運行溫度之前,該功能不會被啟動。這一原則同樣適用于以下情形:空調(diào)尚未將車廂調(diào)節(jié)至期望的溫度、電池尚未充足電或駕駛者轉(zhuǎn)動了方向盤。
自動啟動 / 停止功能由一個監(jiān)視來自所有相關(guān)傳感器之數(shù)據(jù)的中央控制單元負責(zé)協(xié)調(diào),包括起動電機和交流發(fā)電機。出于舒適性或安全性的需要,該控制單元還可自動重新發(fā)動引擎。例如:倘若車輛開始行駛、電池電荷量降至過低的水平或擋風(fēng)玻璃上形成了冷凝水。此外,大多數(shù)系統(tǒng)還能夠區(qū)別出短暫停頓與旅程終止之間的差別。如果駕駛者的座椅安全帶松開、或者車門或后備箱敞開,則該系統(tǒng)不會重新發(fā)動引擎。假如有必要的話,撳壓一個按鈕就可以完全撤消自動啟動 / 停止功能。
然而,當引擎重新發(fā)動且某個信息娛樂系統(tǒng)處于開啟狀態(tài)或存在任何其他需要 5V 以上電壓的電子設(shè)備時,12V電池有可能5V以下,從而導(dǎo)致此類系統(tǒng)復(fù)位。有些信息娛樂系統(tǒng)采用一個 5V 和 8.5V 的工作輸入電壓,而此電壓是由一個依靠汽車電池工作的降壓型轉(zhuǎn)換器饋送的。如果在引擎重新起動 (冷車發(fā)動) 期間輸入電壓降至 5V 以下,則這些系統(tǒng)將在 DC/DC 轉(zhuǎn)換器僅能對輸入電壓進行降壓操作的時候復(fù)位。顯然,如果在觀看視頻或聆聽 CD 的過程中,每次汽車重新起動時這些視聽系統(tǒng)就自動復(fù)位,將是用戶無法接受的。
一款新型解決方案
幸運的是,凌力爾特公司推出了一款三路輸出 DC/DC 控制器 LTC3859A,該器件將一個同步升壓型控制器和兩個同步降壓型控制器集成在單個封裝之中。同步升壓型轉(zhuǎn)換器輸出向降壓型轉(zhuǎn)換器饋電以保持一個足夠高的電壓,從而避免那些需要 4V 以上工作電壓的電子系統(tǒng)在引擎重新起動的過程中發(fā)生復(fù)位。此外,當從汽車電池至升壓型轉(zhuǎn)換器的輸入電壓高于其編程輸出電壓時,它將在 100% 的占空比條件下運行,并簡單地將輸入電壓直接傳送至降壓型轉(zhuǎn)換器,從而最大限度地降低了功率損失。圖 1 示出了 LTC3859A 的原理圖,當電池電壓降至 10V 以下時,由同步升壓型轉(zhuǎn)換器向同步降壓型轉(zhuǎn)換器提供 10V 電壓。除了為兩個降壓型轉(zhuǎn)換器供電之外 (在本例中可產(chǎn)生 5V/5A 和 8.5V/3A),升壓型轉(zhuǎn)換器還可被用作“第三輸出”,能夠提供一個額外的 2A 輸出。
圖 1:典型的 LTC3859A 啟動 / 停止應(yīng)用電路原理圖
LTC3859A 是采用全 N 溝道 MOSFET 的低靜態(tài)電流、電流模式控制、三路輸出同步 DC/DC 控制器,啟動時,LTC3859A 在 4.5V 至 38V 的輸入電壓范圍內(nèi)工作,并在啟動后保持工作直到低至 2.5V 為止。兩個降壓型控制器 (通道 1 和 2) 180° 異相運作,并能產(chǎn)生 0.8V 至 24V 的輸出電壓,非常適合給導(dǎo)航、信息娛樂系統(tǒng)、處理器和存儲器供電。升壓型控制器 (通道 3) 與通道 1 同相運行,且能產(chǎn)生高達 60V 的輸出電壓。用于每個通道的強大的 1.1Ω內(nèi)置柵極驅(qū)動器最大限度地降低了 MOSFET 開關(guān)損耗。工作頻率可以設(shè)置在 50kHz 至 900kHz 的范圍內(nèi),或者利用內(nèi)部鎖相環(huán) (PLL) 同步至一個頻率范圍為 75kHz 至 850kHz 的外部時鐘。LTC3859A 不同于 LTC3859 之處是其在 INTVCC 引腳上布設(shè)了一個內(nèi)部箝位電路。該箝位電路提供了一種故障安全方式,可在用戶由于疏忽而使用了一個漏電的肖特基限幅二極管時避免 INTVCC引腳承受過大的電壓。
該器件的其他特點包括用于 IC 電源和柵極驅(qū)動的內(nèi)置 LDO、可編程軟起動、電源良好信號和外部 VCC 控制。VREF 準確度在 -40°C 至 85°C 的工作溫度范圍內(nèi)為 ±1%,LTC3859A 采用 38 引腳 SSOP 封裝或 38 引腳 5mm x 7mm QFN 封裝。
延長電池的工作時間
對于任何在系統(tǒng)其余部分關(guān)斷的情況下需要一根“始終保持接通”的電源總線的電池供電型系統(tǒng)而言,節(jié)省電池能量都是必須的。這種狀態(tài)通常被稱為“睡眠”、“待機”或“空閑”模式,只要求系統(tǒng)具有非常低的靜態(tài)電流。在有可能包括諸多電氣電路 (比如:車載信息服務(wù)系統(tǒng)、CD / DVD 播放機、遙控?zé)o鑰匙進入系統(tǒng)和多條始終保持接通的總線線路) 的汽車應(yīng)用中,為節(jié)省電池能量而要求實現(xiàn)低靜態(tài)電流顯得特別重要。在待機模式中,此類系統(tǒng)的總電流消耗必需盡可能低;而且,隨著汽車的運行越來越多地依賴電子系統(tǒng),汽車制造商所面臨的節(jié)省電池能量的壓力在持續(xù)地增加。
在睡眠模式中 (升壓型轉(zhuǎn)換器和兩個降壓型轉(zhuǎn)換器中的一個處于接通狀態(tài)),LTC3859A 僅吸收區(qū)區(qū) 75μA 的電流。當所有三個通道均接通并處于睡眠模式時,LTC3859A 的吸收電流只有100μA,從而顯著地延長了空閑模式中電池的工作時間。這是通過將器件配置為進入高效率的突發(fā)模式 (Burst Mode®) 操作狀態(tài)來實現(xiàn)的,在此操作模式中,LTC3859A 向輸出電容器輸送簡短的電流脈沖,隨后是一個睡眠周期,此時僅由輸出電容器將輸出功率傳遞至負載。圖 2 示出了說明其工作原理的概念性時序圖。
圖 2:LTC3859A 的突發(fā)模式操作電壓線圖
突發(fā)模式輸出紋波與負載無關(guān),唯一將會變化的是睡眠間隔的長度。在睡眠模式中,大部分內(nèi)部電路都被關(guān)斷,只有用于實現(xiàn)快速響應(yīng)的關(guān)鍵電路除外,從而進一步減小了其靜態(tài)電流。當輸出電壓的降幅足夠大時,睡眠信號電平走低,控制器通過接通頂端的外部 MOSFET 恢復(fù)標準的突發(fā)模式操作。另一方面,也存在這樣的情況 ━━ 用戶希望器件在輕負載電流條件下工作于強制連續(xù)模式或恒定頻率脈沖跳躍模式。這兩種模式的配置均很容易,它們的靜態(tài)電流較高而峰至峰輸出紋波則較低。
負載突降 / 效率 / 解決方案尺寸
“負載突降”(load dump) 這一術(shù)語指的是起動電機被關(guān)閉之后所發(fā)生的感應(yīng)沖擊。對于一個汽車用 12V 鉛酸電池系統(tǒng)來說,此浪涌電壓一般被箝位于 36V (最大值)。該浪涌要求控制器、MOSFET 及關(guān)聯(lián)的組件能在箝位電壓下工作。這些較高電壓器件 (例如:40V MOSFET) 會導(dǎo)致效率下降,必須謹慎地將這種不良影響降至最低。當采用圖 1 中的電路時,每個電壓軌的效率高于 92% (如圖 3 所示)。為清楚起見,分別示出了每個降壓和升壓部分的效率。此外,圖 4 還示出了這款電路的布局和尺寸,其中最高的部件達 4.8mm。
圖 3:LTC3859A 效率與負載電流的關(guān)系曲線 (針對不同的轉(zhuǎn)換器部分)
圖 4:LTC3859A 演示電路板的尺寸和布局 (a) 頂面 (b) 底面
啟動和關(guān)斷
LTC3859A 的三個通道可采用 RUN1、RUN2 和 RUN3 引腳單獨關(guān)斷。把這些引腳中的任一個拉至 1.2V 以下都將關(guān)斷用于對應(yīng)通道的主控制環(huán)路。而把所有三個引腳全部拉至 0.7V 以下將停用所有的控制器和大多數(shù)的內(nèi)部電路,包括內(nèi)置的 LDO。在這種狀態(tài)下,LTC3859A 僅吸收 8μA 的靜態(tài)電流。
軟起動或跟蹤
兩個降壓型控制器的 TRACK/SS1 和 TRACK/SS2 引腳可用于調(diào)節(jié)軟起動接通時間或在啟動期間對兩個或更多的電源進行“重合”或“比例式”跟蹤。這些關(guān)聯(lián)曲線示于圖 5,并同時在主電源與從電源的 TRACK/SS 引腳之間布設(shè)了一個電阻分壓器。
圖 5:LTC3859A 輸出電壓跟蹤:(a) 重合跟蹤 (b) 比例式跟蹤
保護功能
LTC3859A 可配置成利用 DCR (電感器電阻) 或一個檢測電阻器來檢測輸出電流。至于選擇兩種電流檢測方案當中的哪一種,在很大程度上取決于成本、功耗和準確度的綜合權(quán)衡。DCR 日益受到歡迎,原因是其可省去昂貴的電流檢測電阻器且效率較高,尤其是在大電流應(yīng)用中。LTC3859A 擁有用于降壓通道的電流折返功能,以在輸出短路至地時幫助限制負載電流。
內(nèi)置比較器負責(zé)監(jiān)視降壓輸出電壓,并在輸出大于其標稱輸出電壓的 10% 時指示出現(xiàn)了過壓情況。當檢測到這種狀況時,頂端 MOSFET 關(guān)斷而底端 MOSFET 接通,直到過壓狀態(tài)被清除為止。只要過壓狀態(tài)持續(xù)存在,底端 MOSFET 就將連續(xù)保持接通。如果輸出電壓回歸至一個安全的電平,則自動恢復(fù)正常操作。
在較高的溫度條件下,或者內(nèi)部功耗導(dǎo)致芯片內(nèi)部產(chǎn)生過量的自發(fā)熱時,過熱停機電路將關(guān)斷 LTC3859A。當結(jié)溫超過大約 170°C 時,過熱保護電路將停用內(nèi)置的偏置 LDO,從而導(dǎo)致偏置電源降至 0V并以一種有序的方式有效地關(guān)斷整個 LTC3859A。一旦結(jié)溫回落至 155°C 左右,LDO 將重新接通。
結(jié)論
可節(jié)省燃料的汽車啟動 / 停止系統(tǒng)在今后的幾年里將繼續(xù)發(fā)展。對于車載信息娛樂及導(dǎo)航系統(tǒng)的供電,以及需要高達甚至超過 5V 電壓以實現(xiàn)正確運作的磁盤驅(qū)動器的供電,必須謹慎從事。此類系統(tǒng)在輸入電壓因引擎重新發(fā)動而降至穩(wěn)壓范圍之外時會發(fā)生復(fù)位。LTC3859A 提供了一款解決方案,它可利用其內(nèi)置的同步升壓型控制器將電池電壓提升一個安全的工作電平。LTC3859A 將一個同步升壓型控制器與兩個同步降壓型控制器整合在一起,非常適合于給眾多的汽車電子設(shè)備供電,可在引擎重新發(fā)動時保持針對所有輸出電壓的穩(wěn)壓作用。
評論