<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 專題 > 關(guān)公戰(zhàn)秦瓊?!ARM處理器對決X86處理器

          關(guān)公戰(zhàn)秦瓊?!ARM處理器對決X86處理器

          作者: 時間:2012-01-05 來源:天極網(wǎng) 收藏

                  了解平板電腦的網(wǎng)友們,一定對以下詞組并不陌生,“架構(gòu)”“Cortex A8”“Cortex A9”在各大品牌廠商的宣傳海報中隨處可見,這些用來形容平板電腦處理器功能和特性的一些詞組到底是什么意思呢?架構(gòu)處理器又和我們?nèi)粘T陔娔X臺式機和筆記本上使用的INTEL或AMD出品的架構(gòu)處理器有什么不同呢?近期在魅族論壇上就有網(wǎng)友發(fā)帖詳細論述,指出將架構(gòu)的處理器和架構(gòu)的處理器放在一起比較,就好比將飛禽和走獸放在一起比較,實在有點關(guān)公戰(zhàn)秦瓊的無厘頭!

          本文引用地址:http://www.ex-cimer.com/article/127782.htm

          以下是引用的原文:

                  這里就不去管細節(jié),簡單來談一下,ARM和之間為什么不太具有可比性的問題。要搞清楚這個問題首先要明白什么是架構(gòu),之前也有很多人提到了架構(gòu)不同,但架構(gòu)是什么意思?它是一個比較抽象的概念,不太容易用幾句話就解釋清楚。

                  我們要明白CPU是一個執(zhí)行部件,它之所以能執(zhí)行,也是因為人們在里面制作了執(zhí)行各種功能的硬件電路,然后再用一定的邏輯讓它按照一定的順序工作,這樣就能完成人們給它的任務(wù)。也就是說,如果把CPU看作一個人,首先它要有正常的工作能力(既執(zhí)行能力),然后又有足夠的邏輯能力(能明白做事的順序),最后還要聽的懂別人的話(既指令集),才能正常工作。而這些集中在一起就構(gòu)成了所謂的“架構(gòu)”,它可以理解為一套“工具”、“方法”和“規(guī)范”的集合。不同的架構(gòu)之間,工具可能不同,方法可能不同,規(guī)范也可能不同,這也造成了它們之間的不兼容——你給一個意大利泥瓦匠看一份中文寫成的烹飪指南,他當然不知道應(yīng)該干什么了。

                  如果還看不懂,沒關(guān)系,我們繼續(xù)。從CPU發(fā)明到現(xiàn)在,有非常多種架構(gòu),從我們熟悉的X86,ARM,到不太熟悉的MIPS,IA64,它們之間的差距都非常大。但是如果從最基本的邏輯角度來分類的話,它們可以被分為兩大類,即所謂的“復(fù)雜指令集”與“精簡指令集”系統(tǒng),也就是經(jīng)??吹降?ldquo;CISC”與“RISC”。屬于這兩種類中的各種架構(gòu)之間最大的區(qū)別,在于它們的設(shè)計者考慮問題方式的不同。我們可以繼續(xù)舉個例子,比如說我們要命令一個人吃飯,那么我們應(yīng)該怎么命令呢?我們可以直接對他下達“吃飯”的命令,也可以命令他“先拿勺子,然后舀起一勺飯,然后張嘴,然后送到嘴里,最后咽下去”。從這里可以看到,對于命令別人做事這樣一件事情,不同的人有不同的理解,有人認為,如果我首先給接受命令的人以足夠的訓練,讓他掌握各種復(fù)雜技能(即在硬件中實現(xiàn)對應(yīng)的復(fù)雜功能),那么以后就可以用非常簡單的命令讓他去做很復(fù)雜的事情——比如只要說一句“吃飯”,他就會吃飯。但是也有人認為這樣會讓事情變的太復(fù)雜,畢竟接受命令的人要做的事情很復(fù)雜,如果你這時候想讓他吃菜怎么辦?難道繼續(xù)訓練他吃菜的方法?我們?yōu)槭裁床豢梢园咽虑榉譃樵S多非?;镜牟襟E,這樣只需要接受命令的人懂得很少的基本技能,就可以完成同樣的工作,無非是下達命令的人稍微累一點——比如現(xiàn)在我要他吃菜,只需要把剛剛吃飯命令里的“舀起一勺飯”改成“舀起一勺菜”,問題就解決了,多么簡單。

                  這就是“復(fù)雜指令集”和“精簡指令集”的邏輯區(qū)別??赡苡腥苏f,明顯是精簡指令集好啊,但是我們不好去判斷它們之間到底誰好誰壞,因為目前他們兩種指令集都在蓬勃發(fā)展,而且都很成功——X86是復(fù)雜指令集(CISC)的代表,而ARM則是精簡指令集(RISC)的代表,甚至ARM的名字就直接表明了它的技術(shù):Advanced RISC Machine——高級RISC機。

                  到了這里你就應(yīng)該明白為什么RISC和CISC之間不好直接比較性能了,因為它們之間的設(shè)計思路差異太大。這樣的思路導致了CISC和RISC分道揚鑣——前者更加專注于高性能但同時高功耗的實現(xiàn),而后者則專注于小尺寸低功耗領(lǐng)域。實際上也有很多事情CISC更加合適,而另外一些事情則是RISC更加合適,比如在執(zhí)行高密度的運算任務(wù)的時候CISC就更具備優(yōu)勢,而在執(zhí)行簡單重復(fù)勞動的時候RISC就能占到上風,比如假設(shè)我們是在舉辦吃飯大賽,那么CISC只需要不停的喊“吃飯吃飯吃飯”就行了,而RISC則要一遍一遍重復(fù)吃飯流程,負責喊話的人如果嘴巴不夠快(即內(nèi)存帶寬不夠大),那么RISC就很難吃的過CISC。但是如果我們只是要兩個人把飯舀出來,那么CISC就麻煩得多,因為CISC里沒有這么簡單的舀飯動作,而RISC就只需要不停喊“舀飯舀飯舀飯”就OK。

                  這就是CISC和RISC之間的區(qū)別。但是在實際情況中問題要比這復(fù)雜許許多多,因為各個陣營的設(shè)計者都想要提升自家架構(gòu)的性能。這里面最普遍的就是所謂的“發(fā)射”概念。什么叫發(fā)射?發(fā)射就是同時可以執(zhí)行多少指令的意思,例如雙發(fā)射就意味著CPU可以同時拾取兩條指令,三發(fā)射則自然就是三條了?,F(xiàn)代高級處理器已經(jīng)很少有單發(fā)射的實現(xiàn),例如Cortex A8和A9都是雙發(fā)射的RISC,而Cortex A15則是三發(fā)射。ATOM是雙發(fā)射CISC,Core系列甚至做到了四發(fā)射——這個方面大家倒是不相上下,但是不要忘了CISC的指令更加復(fù)雜,也就意味著指令更加強大,還是吃飯的例子,CISC只需要1個指令,而RISC需要5個,那么在內(nèi)存帶寬相同的情況下,CISC能達到的性能是要超過RISC的(就吃飯而言是5倍),而實際中CISC的Core i處理器內(nèi)存帶寬已經(jīng)超過了100GB/s,而ARM還在為10GB/s而苦苦奮斗,一個更加吃帶寬的架構(gòu),帶寬卻只有別人的十分之一,性能自然會受到非常大的制約。為什么說ARM和X86不好比,這也是很重要的一個原因,因為不同的應(yīng)用對帶寬需求是不同的。一旦遇到帶寬瓶頸,哪怕ARM處理器已經(jīng)達到了很高的運算性能,實際上根本發(fā)揮不出來,自然也就會落敗了。

                  說到這兒大家應(yīng)該也已經(jīng)明白CISC和RISC的區(qū)別和特色了。簡而言之,CISC實際上是以增加處理器本身復(fù)雜度作為代價,去換取更高的性能,而RISC則是將復(fù)雜度交給了編譯器,犧牲了程序大小和指令帶寬,換取了簡單和低功耗的硬件實現(xiàn)。但如果事情就這樣發(fā)展下去,為了提升性能,CISC的處理器將越來越大,而RISC需要的內(nèi)存帶寬則會突破天際,這都是受到技術(shù)限制的。所以進十多年來,關(guān)于CISC和RISC的區(qū)分已經(jīng)慢慢的在模糊,例如自P6體系(即Pentium Pro)以來,作為CISC代表的X86架構(gòu)引入了微碼概念,與此對應(yīng)的,處理器內(nèi)部也增加了所謂的譯碼器,負責將傳統(tǒng)的CISC指令“拆包”為更加短小的微碼(uOPs)。一條CISC指令進來以后,會被譯碼器拆分為數(shù)量不等的微碼,然后送入處理器的執(zhí)行管線——這實際上可以理解為RISC內(nèi)核+CISC解碼器。而RISC也引入了指令集這個就邏輯角度而言非常不精簡的東西,來增加運算性能。正常而言,一條X86指令會被拆解為2~4個uOPs,平均來看就是3個,因此同樣的指令密度下,目前X86的實際指令執(zhí)行能力應(yīng)該大約是ARM的3倍左右。不過不要忘了這是基于“同樣指令密度”下的一個假設(shè),實際上X86可以達到的指令密度是十倍甚至百倍于ARM的。

                  最后一個需要考慮的地方就是指令集。這個東西的引入,是為了加速處理器在某些特定應(yīng)用上性能而設(shè)計的,已經(jīng)有了幾十年的歷史了。而實際上在目前的應(yīng)用環(huán)境內(nèi),起到?jīng)Q定作用的很多時候是指令集而不是CPU核心。X86架構(gòu)的強大,很多時候也源于指令集的強大,比如我們知道的ATOM,雖然它的X86核心非常羸弱,但是由于它支持SSE3,在很多時候性能甚至可以超過核心性能遠遠強大于它的Pentium M,這就是指令集的威力。目前X86指令集已經(jīng)從MMX,發(fā)展到了SSE,AVX,而ARM依然還只有簡單而基礎(chǔ)的NEON。它們之間不成比例的差距造成了實際應(yīng)用中成百上千倍的性能落差,例如即便是現(xiàn)今最強大的ARM內(nèi)核依然還在為軟解1080p H.264而奮斗,但一顆普通的中端Core i處理器卻可以用接近十倍播放速度的速度去壓縮1080p H.264視頻。至少在這點上,說PC處理器的性能百倍于ARM是無可辯駁的,而實際中這樣的例子比比皆是。這也是為什么我在之前說平均下來ARM只有X86幾十分之一的性能的原因。

                  打了這么多字,其實就是為了說明一點,雖然現(xiàn)在ARM很強大,但它距離X86還是非常遙遠,并沒有因為這幾年的進步而縮短,實際上反而在被更快的拉大。畢竟它們設(shè)計的出發(fā)點不一樣,因此根本不具備多少可比性,X86無法做到ARM的功耗,而ARM也無法做到X86的性能。這也是為什么ATOM一直以來都不成功的原因所在——Intel試圖用自己的短處去和別人的長處對抗,結(jié)果自然是不太好的,要不是Intel擁有這個星球上最先進的半導體工藝,ATOM根本都不可能出現(xiàn)。而ARM如果嘗試去和X86拼性能,那結(jié)果自然也好不到哪兒去,原因剛剛也解釋過了。不過這也不意味著ARM以后就只能占據(jù)低端,畢竟任何架構(gòu)都有其優(yōu)點,一旦有應(yīng)用針對其進行優(yōu)化,那么就可以揚長避短。X86的繁榮也正是因為整個世界的資源都針對它進行了優(yōu)化所致。只要能為ARM找到合適的應(yīng)用與適合的領(lǐng)域,未來ARM也未必不可以進入更高的層次。



          關(guān)鍵詞: ARM X86

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();