優(yōu)化超寬帶直接轉(zhuǎn)換接收器的性能
二階互調(diào)失真寄生信號問題
本文引用地址:http://www.ex-cimer.com/article/134140.htm在直接轉(zhuǎn)換接收器中,二階互調(diào)失真分量 (IM2) 直接落入帶內(nèi) (在基帶頻率)。例如:取兩個間隔開 1MHz (分別位于 2140MHz 和 2141MHz) 的相等功率 RF 信號 (f1 和 f2),以及間隔開 10MHz (位于 2130MHz) 的 LO 信號。最終的 IM2 寄生信號將位于 f2 – f1 (即 1MHz)。通過采用外部控制電壓,LTC5585 擁有了在 I 和 Q 通道上進行獨立調(diào)節(jié)以實現(xiàn)最小 IM2 寄生信號的獨特能力。圖 3 示出了一種用于 IIP2 測量和校準的典型配置。差分基帶輸出采用一個平衡-不平衡變壓器進行組合,而 1MHz IM2 差動頻率分量采用一個低通濾波器來選擇,以防止位于 10MHz 和 11MHz 的強大主音調(diào)壓縮頻譜分析儀前端。如果未采用該低通濾波器,則必須在頻譜分析儀上提供 20~30dB 的衰減及長久的平均測量時間以實現(xiàn)上佳的測量。如圖 4 中的輸出頻譜所示,可以預(yù)知 IM2 分量將落入帶內(nèi) (在 1MHz)。另外,該曲線圖還示出了調(diào)節(jié)前后的 IM2 分量 —— 通過調(diào)節(jié) IP2I 和 IP2Q 引腳上的控制電壓,可使寄生信號電平下降大約 20dB。該調(diào)節(jié)使 IM2 寄生信號電平下降到低至 -81.37dBc。
圖 3:用于 IIP2 校準的測試配置 (采用 1MHz 低通濾波器以選擇 IM2 分量)
圖 4:未采用低通濾波器時的輸出頻譜
由于擁有這種 IIP2 優(yōu)化能力,因此可以考慮兩種可行的 IP2 校準策略。一種可以是在工廠里完成并在“設(shè)定后便不需再過問” 的校準步驟。在這種場合,每個調(diào)節(jié)引腳采用一個簡單的微調(diào)電位器就足夠了,如圖 3 所示。另一種策略是利用軟件來執(zhí)行自動閉環(huán)校準算法,這使得能夠周期性地對設(shè)備進行校準。對于已經(jīng)在監(jiān)視其發(fā)送器輸出的 DPD 接收器而言,這是小事一樁,因為發(fā)送器能輕松地產(chǎn)生兩個測試音。對于主用接收器,這種校準可能需要額外的硬件以將兩個測試音回送至接收器通道。在任何情況下所有這些都可以在一個離線校準周期中完成。這樣的一種方法將需要把那些有可能影響基站性能的實際工作環(huán)境因素考慮在內(nèi)。
DC 偏移電壓清零有助于優(yōu)化 A/D 轉(zhuǎn)換器動態(tài)范圍
該芯片還集成了一種相似的調(diào)節(jié)能力,以清零 I 和 Q 通道的 DC 輸出電壓。當整個信號鏈路采用 DC 耦合時,因內(nèi)部失配以及 LO 和 RF 輸入泄漏的自混頻所產(chǎn)生的 DC 偏移分量會縮減 ADC 的動態(tài)范圍。舉個例子,當一個 10mV 的中等輸出 DC 偏移電壓通過一個 20dB 增益級時,將在 A/D 轉(zhuǎn)換器的輸入端產(chǎn)生 100mV 的 DC 偏移。對于 12 位 ADC 的 2Vp-p 輸入范圍而言,該 DC 偏移量意味著空間減少了 205 LSB,即實際上導(dǎo)致 ADC 的動態(tài)范圍縮小了 0.9dB。
為了最大限度地減少 LO 與 RF 輸入之間的泄漏,應(yīng)謹慎地隔離這兩個信號。在 PCB 布局中,需把這兩個信號的印制線彼此分離以阻止交叉耦合。即使有可量度的泄漏至 RF 端口,LO 信號也將發(fā)生自混頻,從而在輸出中形成一個 DC 偏移項。幸運的是,LO 電平常常是恒定的,因此 DC 偏移也是恒定的,而且能輕松地通過調(diào)節(jié)予以消除。更成問題的是 RF 輸入,它會在一個很寬的信號電平范圍內(nèi)變化。至 LO 輸入端的任何的信號泄漏都將發(fā)生自混頻,并在信號變化時產(chǎn)生一個動態(tài) DC 偏移電壓。這將使解調(diào)信號產(chǎn)生失真。因此,保持很少的泄漏將有助于最大限度地抑制 DC 偏移。
直接轉(zhuǎn)換接收器的潛在成本優(yōu)勢
零中頻接收器因其潛在的成本節(jié)省優(yōu)勢而特別引人注目。如上文所述,RF 信號被解調(diào)至一個低頻基帶。在較低的頻率下,濾波器的設(shè)計變得較為容易。此外,零中頻解調(diào)在基帶上還不會產(chǎn)生鏡頻,因而免除了增設(shè)一個相對昂貴的 SAW 濾波器之需?;蛟S其中最吸引人的一點是 ADC 采樣速率可以顯著減低。在我們上面所舉的例子中,利用一個雙通道 310Msps ADC (例如:凌力爾特的 LTC2258-14) 即可有效地滿足 150MHz 的 I 和 Q 基帶帶寬,而不必去使用一個貴得多的較高采樣速率 ADC。
結(jié)論
面對無線接收器帶寬的增加與性能的提高,一款新型寬帶正交解調(diào)器提供了一種替代方案,可幫助克服其架構(gòu)缺點并提升接收器的性能水平,同時在成本方面也受到用戶所收接。
評論