電容式觸控電荷轉(zhuǎn)移橫向模式技術(shù)
與之相反,橫向模式電荷轉(zhuǎn)移感測是每個感測元素都采用兩個電極?;旧?,其電氣行為與單端電荷轉(zhuǎn)移感測相同,但這些電路在發(fā)送/接收矩陣中采用電極數(shù)組創(chuàng)造觸控屏幕功能。該方案的優(yōu)點是其需要的布線較少,更甚之能同時識別和區(qū)分多個觸點之間的差異,單端電路也可感測多個觸點,不過由于訊號本身模糊,故不能區(qū)分。此外,橫向模式方案還有速度快和功耗低的優(yōu)勢,因為其能同時測量一條驅(qū)動線路上的所有節(jié)點,所以可減少50%的采集周期數(shù)。這種雙電極式結(jié)構(gòu)具有自我屏蔽外部噪聲的功能,在定功率級上可提高訊號穩(wěn)定性,因此,量研科技(Quantum Research)一直將橫向模式感測技術(shù)作為驅(qū)動觸控屏幕的主要方案,利用高載模式采樣、擴頻調(diào)制及數(shù)字訊號處理等各種增強型技術(shù)的結(jié)合,促成抗噪聲源干擾能力強,即使在惡劣環(huán)境下也較穩(wěn)健的解決方案。
在電氣方面,橫向模式感測的工作原理非常類似于T橋衰減器電路,使用者的手指實際上相當于一對電容之間的Cx項(圖3)。手指觸控屏幕表面吸收驅(qū)動電極和接收電極之間的耦合電荷,電荷經(jīng)由大量雜散電容路徑返回至電路的接地,這會降低訊號的強度,而降低的程度很容易且可靠地測出。
圖3:橫向模式感測的工作原理
盡管功耗極低,橫向模式傳感器卻容易可穿過好幾毫米厚的塑料、玻璃及其它材料,檢測出使用多手指觸摸,電極可由任何導(dǎo)電材料制作而成,如ITO,而且?guī)缀跞魏纬叽绾托螤疃伎梢?。噪聲消除算法可幫助這些傳感器消除LCD等模塊產(chǎn)生的噪聲,通常毋需單獨的屏蔽層,從而提高顯示器的光傳輸性能,同時降低產(chǎn)品的建構(gòu)成本和背光功率的要求,而廠商推出的QMatrix橫向模式電路采用一種雙斜坡轉(zhuǎn)換形式,可確保電路對時間和溫度的變化具有高度穩(wěn)定性(圖4)。
圖4:QMatrix橫向模式電路示意圖
廠商發(fā)展的芯片透過與驅(qū)動脈沖同步開關(guān)的采樣電容收集耦合到接收電極中的訊號,并利用一個脈沖串改進訊噪比,每個脈沖串的脈沖數(shù)量將直接影響電路的增益,因此,可方便調(diào)整電路增益,使其適合于不同的面板材料、按鍵尺寸和面板厚度。
脈沖串產(chǎn)生的第一個斜坡是加到采樣電容上的梯級波形訊號,脈沖串過后,驅(qū)動器把斜率電阻的參考端切換為高電平,對采樣電容進行放電,直到將電荷用完,電壓比較器檢測出零交叉點為止,獲得零交叉點所需的斜坡時間與X、Y電荷耦合成比例,并隨用戶手指觸摸面板表面而減?。▓D5)。
圖5:零交叉點所需的斜坡時間與X、Y電荷耦合比例圖
這種自動調(diào)零行為讓電路對工作電壓和電路參數(shù),如Cs值的變化具有極強的適應(yīng)能力。該項技術(shù)還提供潮濕抑制及固有的抗射頻(RF)干擾能力,這是其它電容方法無法望其項背的部分,如面板表面若存在水珠之類的局部水膜,將使訊號耦合略微增加;而使用者手指的觸摸則會使耦合減小。這意味著少量的潮濕會造成錯誤的方向變化,導(dǎo)致誤觸發(fā),這是令其它解決方案感到頭疼的問題。潮濕水膜的出現(xiàn)可能引開電荷,但由于水膜的建模模型是一個依賴于時間特性的分布式RC網(wǎng)絡(luò),電荷收集中門控時間的使用(微秒數(shù)量級或更短)抑制水膜的影響。
評論