多點(diǎn)協(xié)作系統(tǒng)中異步干擾特性及其預(yù)編碼設(shè)計(jì)
本文引用地址:http://www.ex-cimer.com/article/156189.htm
4 性能分析
在數(shù)值模擬中,以一城市多基站協(xié)作微蜂窩多用戶系統(tǒng)下行傳輸鏈路為分析對象,如圖1所示。小區(qū)內(nèi)的多用戶間干擾可通過MIMO-OFDM技術(shù)加以解決。為了主要討論小區(qū)間的信號異步干擾,以及分析問題的簡化,考慮的仿真場景為:3個(gè)相鄰小區(qū),分布3個(gè)發(fā)射基站和2個(gè)接收用戶,基站間的距離為500 m,且每基站發(fā)射天線數(shù)和用戶接收天線數(shù)目均為2,即M=3,K=2,Nt=2,Nr=2,進(jìn)一步假設(shè)每個(gè)基站發(fā)射功率相同,傳輸信道是瑞利平坦衰落的,數(shù)據(jù)調(diào)制采用QPSK方式,符號脈沖為方波且持續(xù)時(shí)間Ts為1 μs。
如圖3和圖4所示的性能仿真,對四種情況進(jìn)行對比分析,即情況(A):基站間無協(xié)作,視鄰近小區(qū)信號為干擾噪聲;情況(B):多基站協(xié)作傳輸,且考慮了到達(dá)目標(biāo)用戶的期望信號和干擾信號間異步特性,但沒有經(jīng)過處理,視為異步干擾對待;情況(C):多基站協(xié)作傳輸,在充分考慮目標(biāo)用戶期望信號與來自其他用戶干擾信號的異步傳輸特性基礎(chǔ)上,通過基站端聯(lián)合優(yōu)化設(shè)計(jì)的預(yù)編碼矩陣進(jìn)行預(yù)處理以盡量減小異步干擾對系統(tǒng)性能影響;情況(D):忽略信號傳輸異步特性的理想同步多基站協(xié)作傳輸。
如圖3所示為四種情況下用戶信噪比(Es/No)與系統(tǒng)平均最小均方誤差(MMSE)變化關(guān)系;如圖4所示為四種情況下用戶信噪比(Es/No)與系統(tǒng)平均頻譜效率((b/s)/Hz)變化關(guān)系。從圖3和圖4可知,理想的多基站同步協(xié)作模式獲得的系統(tǒng)均方誤差特性和平均頻譜效率最好,在異步環(huán)境中受制于信號異步干擾影響的多基站協(xié)作傳輸所獲得的系統(tǒng)性能明顯降低。但若能進(jìn)一步考慮系統(tǒng)中的信號傳輸異步特性,并通過一定的預(yù)編碼矩陣聯(lián)合優(yōu)化設(shè)計(jì)進(jìn)行預(yù)處理,則可明顯改善系統(tǒng)性能,有利于減小異步干擾信號的影響。
從以上討論可看出,即使在完美的定時(shí)提前機(jī)制下能保證各協(xié)作基站到達(dá)目標(biāo)用戶期望信號是同步的,但在實(shí)際應(yīng)用中,由于不同的路徑傳輸時(shí)延,也很難確保來自其他用戶的干擾信號與期望信號同時(shí)到達(dá)目標(biāo)用戶,因此在協(xié)作多基站聯(lián)合向多用戶發(fā)射數(shù)據(jù)時(shí)不可避免地會(huì)產(chǎn)生干擾信號傳輸?shù)漠惒叫?。相?yīng)地,若能在Co-MP系統(tǒng)中充分得知各干擾信號傳輸?shù)臅r(shí)間異步結(jié)構(gòu),并聯(lián)合一定的預(yù)編碼優(yōu)化設(shè)計(jì)準(zhǔn)則進(jìn)行預(yù)處理,則可減小異步干擾對系統(tǒng)性能的影響。特別是在高速率數(shù)據(jù)傳輸情況下,更應(yīng)全面而充分地考慮協(xié)作系統(tǒng)中各信號傳輸?shù)臅r(shí)間異步特性。若系統(tǒng)存在定時(shí)提前誤差,則還應(yīng)進(jìn)一步考慮定時(shí)抖動(dòng)對目標(biāo)用戶期望信號的接收影響。此外,在考慮信號傳輸異步特性基礎(chǔ)上如何找到一種低復(fù)雜度、高可靠性的預(yù)編碼優(yōu)化設(shè)計(jì)算法,還值得進(jìn)一步深入研究。
參考文獻(xiàn)
[1] DAVID G, MANSOOR S, SHIU Da Shan,et al. From theory to practice: an overview of MIMO space-time coded wireless system [J]. IEEE J. Select. Areas Commun, 2003,21(3): 281-302.
[2] DAI H, MOLISCH A F, POOR H V. Downlink capacity of interference-limited MIMO systems with joint detection[J].IEEE Trans. Wireless Commun., 2004, 3(2): 442-453.
[3] SOMEKH O, ZAIDEL B M, SHAMAI S. Sum rate characterization of joint multiple cell-site processing[J]. IEEE Tran. on Info. Theory, 2007,53(12):4473-4497.
[4] Further Advancements for E-UTRA Physical Layer Aspects(Release 9)[S]. 3GPP Technical Specification, TR 36.814 V0.4.1, Feb. 2009. [Online]. Available: http://www.3gpp.org.
[5] XIAO Shang Hui, ZHANG Zhong Pei, SHI Zhi Pei. Clustered multi-point coordinating transmission systems with the Reduced Overhead [J]. Journal of Communications. 2010, 5(6):493-500.
[6] Boon Loong Ng, JAMIE S, STEPHEN E, HANLY V,et al. Distributed downlink beamforming with cooperative base stations[J]. IEEE Trans. on Information Theory, 2008,54(12): 5491-5499.
[7] SIMEONE O, SOMEKH O, POOR H V, et al. Downlink multicell processing with limited-backhaul capacity[J].
EURASIP J. on Adv. in Signal Process., Article ID:840814, 2009:1-10.
[8] 肖尚輝, 張忠培, 史治平. 多基站協(xié)作下行系統(tǒng)中異步空時(shí)碼構(gòu)造與分析[J]. 電子科技大學(xué)學(xué)報(bào), 2010,39(3):335-339.
[9] NG B L, EVANS J S, HANLY S V,et al. Transmit beamforming with cooperative base stations[C]. in Proc. IEEE Intl. Symp. Inf. Th., (Adelaide, Australia), 2005:1431-1435.
[10] SPENCER Q H, SWINDLEHURST A L, HAARDT M. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels[J].IEEE Transactions On Signal Processing, 2004, 52(2): 461-471.
[11] SHAO L, ROY S. Downlink multicell MIMO-OFDM: An architecture for next generation wireless networks [C]. in Proc. IEEE WCNC, Mar.2005.
[12] WINDPASSINGER C, FISCHER R F H,VENCEL T,et al. Precoding in multiantenna and multiuser communications[J]. IEEE Trans.Wireless Commun.,2004,3(4):1305-1316.
評論