開槽波導(dǎo)3次諧波回旋行波放大管非線性理論與數(shù)值模擬
本文討論了開槽圓柱波導(dǎo)的高頻場(chǎng)分布,給出了注波互作用自洽非線性理論.在電子作大回旋運(yùn)動(dòng)與考慮速度零散的情況下,采用四階龍格庫塔法,對(duì)均勻截面開槽波導(dǎo)3次諧波回旋行波放大管注波互作用進(jìn)行了數(shù)值計(jì)算,得出一些重要的互作用規(guī)律,為回旋行波放大管的進(jìn)一步研究打下了基礎(chǔ).
關(guān)鍵詞:回旋行波放大管;開槽波導(dǎo);自洽非線性;高次諧波;速度零散
Self-Consistent Nonlinear Theory and Simulation of a Slotted Third-Harmonic Gyro-TWT Amplifier
ZHANG Hong-bin,LI Hong-fu,ZHOU Xiao-lan,WANG Hua-jun,YU Sheng,DU Pin-zhong
(Inst.of High Energy Electronics,UEST of China,Chengdu 610054,China)
Abstract:The distribution of RF field of the slotted cylindrincal wave guide is discussed and the self-consistent nonlinear theory of the beam-wave interaction is presented in this paper.The behavior of the slotted gyrotron travelling-wave amplifier (gyro-TWT) with a uniform section is simulated by a Runge-Kutta algorithm code for a warm beam encircling around the axis of the wave guide.Some important regulations are obtained.This work presents the bases to further studies of the gyro-TWT.
Key words:Gyro-TWT;slotted wave guide;self-consistent nonlinear;high harmonic wave;velocity spread
一、引 言
回旋行波放大管屬于毫米波放大器件,它以高功率、高效率、寬頻帶而著稱,在雷達(dá)與通訊等領(lǐng)域有著極其重要的應(yīng)用前景,自七十年代末以來,在理論和實(shí)驗(yàn)方面都取得了長足的進(jìn)展[1~5].
對(duì)于基次諧波回旋行波管,在毫米波波段需要很高的直流磁場(chǎng),因而需要體積較大的超導(dǎo)系統(tǒng)或電磁鐵系統(tǒng)來提供直流磁場(chǎng).采用高次諧波互作用,便可大大降低管子對(duì)直流磁場(chǎng)的要求[2,3],使采用永久磁鐵成為可能,從而可大大減小管子的體積.由于開槽壁和光滑壁波導(dǎo)中高頻場(chǎng)分布存在的差異,開槽波導(dǎo)更有利于注波互作用,對(duì)工作電壓要求較低,工作效率比光滑壁波導(dǎo)要高,同時(shí)與光滑壁波導(dǎo)相比具有很好的模式競(jìng)爭(zhēng)抑制能力[6].本文以95GHz開槽3次諧波為例,對(duì)回旋行波放大管進(jìn)行了數(shù)值模擬,得到了一些重要的互作用規(guī)律.
二、高頻場(chǎng)模式和特性
圖1所示為開槽波導(dǎo)結(jié)構(gòu)以及電子注軌跡橫截面圖(虛圓表示電注橫截面圖).設(shè)N為開槽波導(dǎo)的槽數(shù),θ0為間隙半張角,a、b分別為波導(dǎo)內(nèi)外半徑,r、φ、z為電子的柱坐標(biāo),v⊥為電子的橫向速度,φ為動(dòng)量空間角,即v⊥與x軸夾角.為了方便起見,將波導(dǎo)分為兩個(gè)區(qū)域進(jìn)行討論,即:Ⅰ區(qū)(0<r<a)和Ⅱ區(qū)(a<r<b).由于在回旋行波管中電子注與波的有效互作用場(chǎng)為TE波場(chǎng),故僅需關(guān)心橫電波高頻場(chǎng)的分布情況[7~9].這里只給出了高頻電場(chǎng)分量的表達(dá)式,有關(guān)高頻磁場(chǎng)分量的表達(dá)式可進(jìn)一步能過電磁場(chǎng)分量關(guān)系求得.
圖1 中空外開槽波導(dǎo)及電子注橫截面示意圖.虛圓為電子注橫截面示意圖 在Ⅰ區(qū)(0<r<a)中 (1) 在Ⅱ區(qū)(a<r<b)中 Ez=0 (4) (6) 其中 (7) 在以上各式中,E0為高頻場(chǎng)振幅,Γ為角向諧波數(shù),ΑΓ為角向Γ次諧波項(xiàng)的振幅系數(shù),kc為截止波數(shù),q為開槽序數(shù)(q=1,2,…,N),m代表高頻場(chǎng)的角向模式(m=0,1,2,…,N-1).AΓ的值以及電路的色散關(guān)系可由電磁場(chǎng)在r=a處的邊界條件確定. (9) 色散關(guān)系為 (10) 式(9)表明,只有當(dāng)空間諧波次數(shù)Γ=m+lN時(shí),非零空間諧波項(xiàng)才存在.角向模式?jīng)Q定相鄰隙間高頻場(chǎng)的相位差,對(duì)于每一具體模式,此相位差值為m2π/N.每一角向模式均由無數(shù)個(gè)角向諧波項(xiàng)組成,其諧波振幅系數(shù)由式(9)決定.在所有角向模式中有兩個(gè)比較重要的模式,即π模式和2π模式,其角向諧波相對(duì)強(qiáng)弱分布情況見圖2.由圖2可知,2π模式的能量主要集中于零次諧波項(xiàng)中,而π模式的能量主要集中于±N/2次諧波項(xiàng)中.因此,π模式較2π模式更適合于高次回旋諧波互作用.如果電子注回旋諧波次數(shù)(用S表示)已經(jīng)設(shè)定,那么槽數(shù)N的選擇應(yīng)保證最強(qiáng)非零次角向諧波項(xiàng)的次數(shù)Г與回旋諧波次數(shù)S相等.如,對(duì)于π模式,槽數(shù)N應(yīng)等于2S. |
圖2 角向諧波振幅對(duì)角向諧波數(shù)(Γ)的相對(duì)分布示意圖.(a)π模式(m=N/2,N=6,θ0=15°),(b)2π模式(m=0,N=6,θ0=15°) 相關(guān)推薦技術(shù)專區(qū)
|
評(píng)論