<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          關(guān) 閉

          新聞中心

          EEPW首頁 > 工控自動化 > 設(shè)計(jì)應(yīng)用 > 放大線路交流信號的線性分析

          放大線路交流信號的線性分析

          作者: 時(shí)間:2010-12-10 來源:網(wǎng)絡(luò) 收藏

           是非電路。因?yàn)闃?gòu)成其電路的電子元件是非元件。要用他對進(jìn)行不失真地,必須設(shè)置適當(dāng)?shù)墓ぷ鼽c(diǎn),使電子器件工作在近似區(qū)域,這就決定了器的包括直流。而非線性器件對直流所呈現(xiàn)的性能不同,這就是放大器分析與一般線性電路分析的不同之處,當(dāng)對放大器進(jìn)行小信號分析時(shí),其電路模型又是線性的。但電子器件的非線性對于放大器的分析卻一直起著重要的作用。

          本文引用地址:http://www.ex-cimer.com/article/162577.htm

            關(guān)鍵詞:放大;電子器件;線性;非線性

            《電子技術(shù)基礎(chǔ)》是電子類專業(yè)一門重要的技術(shù)基礎(chǔ)課。模擬電路是學(xué)生難學(xué)、教師難教的一門課程。放大器是模擬電路的入門基礎(chǔ),也是《電子技術(shù)基礎(chǔ)》的重點(diǎn)和難點(diǎn),只有解決了這個(gè)難題,才能進(jìn)入電子技術(shù)的領(lǐng)域。筆者經(jīng)過教學(xué)實(shí)踐,逐漸形成了以非線性器件、線性器件與線性放大的主要矛盾,以線性非線性線性為主線,以直流分析和分析為主要內(nèi)容的放大器的分析思路和原則,較好地解決了從《電路》到《電子技術(shù)》的過渡,解決了電子技術(shù)入門難的問題。

            1 從線性到非線性

            電子是電路的一個(gè)分支,是包含有電子器件的電路,而電子器件是非線性器件,所以電子線路是非線性電路?!峨娐贰分幸话惆ǚ蔷€性電路一章,但內(nèi)容少,只是簡單介紹,沒有引起學(xué)生足夠的重視。所以《電子技術(shù)基礎(chǔ)》課一開始就要做好從線性電路到非線性電路的過渡。

            《電子技術(shù)基礎(chǔ)》一開始就講PN結(jié),PN結(jié)是半導(dǎo)體器件的基礎(chǔ)。在討論了PN結(jié)的工作原理,得到PN結(jié)的伏安特性后,就進(jìn)入了非線性:其伏安特性曲線為非線性函數(shù)。在這里首先要給出線性電阻的定義,引出直流(靜態(tài))電阻和交流(動態(tài))電阻的概念,對比線性電阻(伏安特性曲線為通過原點(diǎn)的一條直線,其直流電阻和交流電阻相等且為一常量)可得出如下重要結(jié)論:

            (1)非線性元件在伏安特性曲線上任一點(diǎn)的直流電阻和交流電阻一般是不相等的。

            (2)非線性元件的直流電阻和交流電阻不是一個(gè)常數(shù),而是隨著靜態(tài)工作點(diǎn)的不同而變化。

            PN結(jié)的正向電阻很小,而反向電阻很大。所以,往往把他的非線性概括為單向?qū)щ娦?。二極管就是一個(gè)PN結(jié),三極管由2個(gè)PN結(jié)組成,當(dāng)他工作在放大狀態(tài)時(shí),輸入特性相當(dāng)于PN結(jié)的正向特性,而輸出特性相當(dāng)于基區(qū)注入少數(shù)載流子控制下的PN結(jié)反向特性。

            以上講的是電子器件的非線性,有了電子器件非線性特點(diǎn),才有電子線路與一般線性電路的區(qū)別,才能理解放大器的工作原理、靜態(tài)工作點(diǎn)的設(shè)置及直流分析和交流分析的不同。

            2 非線性帶來的放大線路的特點(diǎn)

            非線性元件往往會產(chǎn)生新的頻率分量,也就是產(chǎn)生非線性失真。這就是電子線路必須考慮的首要問題。如果把交流信號直接加到三極管的發(fā)射結(jié)上(即不加靜態(tài)偏置),則由于發(fā)射結(jié)的單向?qū)щ娦?,即便忽略了他的死區(qū)電壓和正向特性的非線性,也會產(chǎn)生嚴(yán)重的非線性失真,這樣只有正半周導(dǎo)通,而負(fù)半周是截止的(乙類工作狀態(tài))。只有將交流信號的中心位置沿電壓軸向上平移,即在發(fā)射結(jié)加正向偏壓,并使正向偏壓值大于交流信號的振幅值,才能使PN結(jié)在交流信號的正、負(fù)半周均導(dǎo)通(甲類工作狀態(tài)),才能得到不失真的放大,由此得到2條結(jié)論:

            (1)為了克服PN結(jié)單向?qū)щ娦詭淼姆蔷€性失真,放大器在加入交流信號之前必須加上直流偏置信號。

            (2)放大器線路中既有直流信號,也有交流信號; 2種信號的流通回路可能不同,即既有直流通路,又有交流通路;放大器中各處的電壓和電流既有直流分量,又有交流分量,即瞬時(shí)量等于直流量加交流量,這就決定了放大器的分析包括直流分析和交流分析2部分,直流分析是確定放大器的直流工作點(diǎn),交流分析是計(jì)算放大倍數(shù),輸入和輸出電阻、輸出功率和效率以及頻率響應(yīng)等性能指標(biāo)。直流信號與交流信號的通路不同,特別是非線性器件對直流信號和交流信號所呈現(xiàn)的性能不同(直流電阻和交流電阻),所以直流分析和交流分析要采用不同的電路網(wǎng)絡(luò)和參數(shù)。這些往往被一些同學(xué)所忽略,應(yīng)特別引起注重。

            3 微變信號的線性等效電路分析

            對微變信號在放大器的分析方法中,把他變?yōu)榫€性電路的分析問題,這樣就完成了線性---非線性--- 線性的全過程。但這并不是回到了原來的地方去,而是有了一個(gè)質(zhì)的飛躍和提高。雖然放大線路的交流分析也是線性分析,但必須采用非線性器件在給定的靜態(tài)工作點(diǎn)上的交流參數(shù),非線性的特點(diǎn)在這里仍然起作用,在很多電子線路中,就是利用電子器件的直流電阻和交流電阻不同這一特點(diǎn)的。利用這一概念可以理解和解釋很多電路的工作原理。例如,有源負(fù)載就是利用這一特點(diǎn),在較低的直流電源電壓或較大的靜態(tài)工作電流的情況下,得到一個(gè)較大的交流等效電阻,在差動放大電路中,通過對長尾式差動放大器發(fā)射極電阻功能的分析,知道他能夠有效地減小共模放大倍數(shù)而對差模信號沒有任何影響,所以他越大越好,如果用線性電阻,在一定的工作電流下,選用大的電阻,就必須受到發(fā)射極直流電源電壓的限制,這樣,選用交流電阻很大而直流電阻很小的有源負(fù)載就是很自然。

            4 結(jié) 語

            《電路》課程中一般的線性電路分析,到電子器件的非線性,再到放大線路中交流信號的線性分析,至此,對放大線路分析的任務(wù)就基本完成了,因?yàn)殡娐肪褪怯呻娐吩?gòu)成的回路,分析電路就是先用電路元件的模型代替這些元件后,利用電路基本定律和基本分析方法,對由電路元件的模型構(gòu)成的網(wǎng)絡(luò)求解,電子線路與一般電路的惟一區(qū)別就在于他包含有電子器件?,F(xiàn)在,當(dāng)把電子器件也用他的電路模型代替后,電子線路也就變成了一般的電路,其分析也就變成了一般電路的分析,這樣講,是讓學(xué)生明白,電子線路是電路的一個(gè)分支,《電子技術(shù)基礎(chǔ)》是《電路》的延續(xù)和擴(kuò)展,其基本定律和分析方法是相同的,從而建立一個(gè)統(tǒng)一、完整的電路分析的概念。



          關(guān)鍵詞: 線性 分析 信號 交流 線路 放大

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();