<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          關(guān) 閉

          新聞中心

          EEPW首頁(yè) > 工控自動(dòng)化 > 設(shè)計(jì)應(yīng)用 > 熱電致冷的激光器溫度控制電路設(shè)計(jì)

          熱電致冷的激光器溫度控制電路設(shè)計(jì)

          作者: 時(shí)間:2010-12-07 來(lái)源:網(wǎng)絡(luò) 收藏

          引言
          在光通信領(lǐng)域中,用于高速、長(zhǎng)距離通信的電吸收調(diào)制(Electlro-absorption Modulated Laser,EML)對(duì)溫度穩(wěn)定性的要求很高,并朝著小型化和高密度化方向發(fā)展。EML是第一種大量生產(chǎn)的銦鎵砷磷(InGaAsP)光電集成器件。它是在同一半導(dǎo)體芯片上集成光源和電吸收外調(diào)制器,具有驅(qū)動(dòng)電壓低、功耗低、調(diào)制帶寬高、體積小,結(jié)構(gòu)緊湊等優(yōu)點(diǎn),比傳統(tǒng)DFB激光器更適合于高速率、長(zhǎng)距離的傳輸。
          EML激光器的輸出波長(zhǎng)、電流閾值、最大輸出功率和最小功率的波動(dòng)都直接受工作溫度的影響。同時(shí),光源的啁啾聲受限于光通道的最大允許色散,雖然光纖放大器可延長(zhǎng)信號(hào)傳輸距離,但色散值隨傳輸距離的線性累積與光纖放大器無(wú)關(guān),因此只能對(duì)光源的啁啾提出很苛刻的要求。使用直接調(diào)制激光器遠(yuǎn)遠(yuǎn)滿足不了系統(tǒng)對(duì)光源性能的要求,就目前技術(shù)而言,最簡(jiǎn)單的方法是使用帶的電吸收激光源。
          本設(shè)計(jì)方案采用體積小且易于控制的制冷器(ThermoElectric Cooler,TEC)作為制冷和加熱器件,并采用高精度的負(fù)溫度系數(shù)熱敏電阻(NTC)作為溫度傳感器,以MCU為控制核心,對(duì)EML激光器進(jìn)行精密。EML的內(nèi)部結(jié)構(gòu)框圖如圖1所示。虛線框內(nèi),上面的二極管負(fù)責(zé)監(jiān)控激光器和控制開(kāi)關(guān),下面的二極管控制背光電流。

          本文引用地址:http://www.ex-cimer.com/article/162603.htm



          1 基于TPS63000的TEC控制
          1.1 TEC的原理分析

          TEC制冷器又稱半導(dǎo)體制冷器。電荷載體在導(dǎo)體中運(yùn)動(dòng)形成電流,當(dāng)直流通過(guò)兩種不同的導(dǎo)體材料,接觸端上將產(chǎn)生吸熱或放熱現(xiàn)象,稱為帕爾貼效應(yīng)。TEC制冷器正是利用了帕爾貼效應(yīng)實(shí)現(xiàn)制冷或制熱,具有無(wú)噪聲、無(wú)磨損、無(wú)污染、制冷(熱)速度快、可靠性高、體積小、控制調(diào)節(jié)方便等特點(diǎn)。
          目前,大多數(shù)EML激光器內(nèi)部都集成有TEC和熱敏電阻,但其控制電路需采用專用芯片或自行設(shè)計(jì),否則激光器不能正常工作。常用的TEC控制電路包括2個(gè)PWM降壓變換器、4個(gè)開(kāi)關(guān)(S1~S4)、2個(gè)二極管(D1和D2)、2個(gè)濾波電感(L1和L2)、2個(gè)電容(C1和C2)。TEC與電容C1并聯(lián)分別接PWMl和PWM2降壓變換器,PWMl和PWM2產(chǎn)生的輸出直流電壓為V1、V2。提供給TEC的電流ITBC=(V1-V2)/RTRC,RTEC為TEC兩電極間的阻抗。這種控制電路典型應(yīng)用于Maxim公司的MAX8521、MAXl968以及Linear公司的LTC1923芯片中,主要存在以下的缺點(diǎn):
          ①EMI較大。控制電路中的兩個(gè)濾波電感會(huì)對(duì)周圍產(chǎn)生電磁干擾,且濾波電感的回路阻抗易發(fā)生突變而導(dǎo)致產(chǎn)生尖銳的脈沖。
          ②外圍電路器件數(shù)量龐大。溫度的反饋信號(hào)以及其參數(shù)設(shè)置均采用模擬電路,從而使應(yīng)用的成本和復(fù)雜性增加,TEC工作參數(shù)的設(shè)置不靈活。
          ③TEC的溫控精度不高。由于采用的是模擬的控制方式,外接誤差積分的運(yùn)算放大器以及數(shù)/模轉(zhuǎn)換器的量化誤差都在一定程度上限制了TEC的控制精度。
          ④模式切換較復(fù)雜。控制電路在雙PWM降壓變換器驅(qū)動(dòng)模式下采取模擬的控制方式,沒(méi)有運(yùn)行模式選擇功能。
          1.2 硬件電路結(jié)構(gòu)設(shè)計(jì)
          本文設(shè)計(jì)了一種基于TPS63000的TEC控制電路,采用數(shù)字式PID控制,具有溫控精度高、外圍電路簡(jiǎn)單、執(zhí)行部件的轉(zhuǎn)換效率高等優(yōu)點(diǎn)。
          TI公司的TPS63000是一款升降壓電源管理芯片,DC/DC轉(zhuǎn)換器可在1.8~5.5 V的寬電壓范圍內(nèi)實(shí)現(xiàn)高達(dá)96%的效率。該芯片在降壓和升壓模式之間可自動(dòng)轉(zhuǎn)換,同時(shí)支持電流流入模式。在降壓模式下電壓為3.3 V輸出時(shí),輸出電流最大可達(dá)1200 mA;在升壓模式下電壓為3.3 V或5 V輸出時(shí),輸出電流最大可達(dá)800 mA。
          根據(jù)CyOptics公司的10 Gb/s Cooled EML的使用手冊(cè)可知,激光器的可操作溫度范圍在-40~90℃,TEC制冷器的電流ITEC為-1.5~1.5 A,VTEC為-3.3~3.3 V,熱敏電阻的電流ITHC不得超過(guò)100μA,中心波長(zhǎng)的范圍為1530~1565 nm,且溫度每變化1℃波長(zhǎng)偏移不得
          超過(guò)0.13 nm。
          結(jié)合激光器的具體指標(biāo),要做到對(duì)TEC溫度的精確控制,可分為以下3步:
          ①熱敏電阻實(shí)時(shí)監(jiān)控溫度;
          ②TEC上電流方向?qū)崿F(xiàn)制冷和加熱;
          ③PID控制準(zhǔn)確、快速、穩(wěn)定地控制TEC電流。
          TEC控制系統(tǒng)是一個(gè)典型的閉環(huán)反饋控制系統(tǒng),其結(jié)構(gòu)如圖2所示。


          EML內(nèi)部集成的高靈敏度NTlC熱敏電阻,溫度特性波動(dòng)小、對(duì)各種溫度變化響應(yīng)快,材料一般為薄膜鉑電阻。電阻的阻值與溫度的關(guān)系是非線性的,可用公式表示為:
          R=RTO×EXP{B(1/T-1/TO)}
          其中,T0為溫度的初始值,B為熱敏指數(shù)。
          熱敏電阻作為傳感器探測(cè)激光器內(nèi)部溫度,并將溫度轉(zhuǎn)換為自身阻值的變化,然后由電路將電阻的變化轉(zhuǎn)換為電壓的變化,其轉(zhuǎn)換精度決定了測(cè)溫的精度。轉(zhuǎn)換后電壓值的大小決定TEC LOOP電路的電流的流向(流入還是流出),以此來(lái)實(shí)現(xiàn)TEC控制電路的制冷或制熱。

          半導(dǎo)體制冷相關(guān)文章:半導(dǎo)體制冷原理



          上一頁(yè) 1 2 下一頁(yè)

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();