一種新的制導(dǎo)炸彈智能控制系統(tǒng)
2 NSFIS的參數(shù)學(xué)習(xí)算法
模糊推理系統(tǒng)是高度非線性系統(tǒng),在對(duì)復(fù)雜系統(tǒng)建模的過程中,其內(nèi)部參數(shù)

步驟1:設(shè)置初始參數(shù)。采用減法聚類算法對(duì)訓(xùn)練數(shù)據(jù)[X,y]進(jìn)行聚類處理,得M到個(gè)聚類中心






步驟2:(1)采用梯度下降算法調(diào)整參數(shù)

(2)同時(shí)采用遺傳算法搜索最佳參數(shù)
1)對(duì)參數(shù)編碼。以減法聚類確定的初始參數(shù)值為參考,考慮參數(shù)的解空間在初始參數(shù)值的正負(fù)s倍范圍內(nèi),將解空間轉(zhuǎn)換為二進(jìn)制,對(duì)各參數(shù)進(jìn)行交叉組合編碼;
2)隨機(jī)生成20個(gè)個(gè)體作為初始群體;
3)將準(zhǔn)則函數(shù)的數(shù)學(xué)期望E[φ(e(t))]映射為適應(yīng)度函數(shù)
用該適應(yīng)度函數(shù)對(duì)群體中個(gè)體的適應(yīng)度進(jìn)行評(píng)估,當(dāng)適應(yīng)度達(dá)到標(biāo)準(zhǔn)Ff,max時(shí),進(jìn)化停止;
4)遺傳操作:采用適應(yīng)度比例方法進(jìn)行選擇,兩點(diǎn)交叉方法進(jìn)行交叉,采用基本變異算子進(jìn)行變異。
評(píng)論