LM567、NE567的功能介紹及應用
本文引用地址:http://www.ex-cimer.com/article/164790.htm
圖4和圖5所示為如何使567產生精密的方波輸出。從引腳6處可以獲得非線性鋸齒波,但其用途有限,不過,在引腳5上可獲得性能極佳的方波。如圖4所示,其輸出方波的上升時間和下降時間為20nS。
此方波的峰到峰幅值等于電源電壓減去1.4V。這種方波發(fā)生器和負載特性極佳,任何大于1KΩ的電阻性負載均不會影響電路的功能。另外,此方波發(fā)生器的輸出也可以加至低阻抗負載,如圖5所示,引腳8輸出端的峰值電流高達100mA,但波形略差。
利用前述的振蕩頻率和電容計算公式(1)和(2),即可確定這類振蕩器的各種參數(shù)。同樣的,R1必須限制在2至20KΩ的范圍內。為使計算簡化,節(jié)約時間,決定振蕩頻率的元件數(shù)值也可以由圖6所示的諾模圖上直接讀出。
例如,需要此567振蕩器工作在10KHz,C1和R1的值可以是0.055uF和2KΩ,或者是0.0055uF和20KΩ。
在567的引腳2上加一控制電壓,即可使振蕩器的工作頻率在一個窄范圍內微調百分之幾。如果加上控制電壓,引腳2應接去耦電容C2,其值應大致為C1的2倍。
567的五個輸出
567的五個輸出端子。其中二個(引腳5和6)提供振蕩器的輸出波形,而第三個輸出端子引腳8,則如前所述為567的主要輸出口。其余的二個輸出端為此解碼器的引腳1和2。
引腳2與鎖相環(huán)的相位檢波器輸出端相接,在內部被靜態(tài)偏置到3.8V。當567接收到帶內輸入信號時,此偏置電壓隨之改變,且在典型的0.95至1.05倍振蕩器自由振蕩頻率范圍內,偏置電壓的變化與輸入信號頻率呈線性關系。其斜率為每頻偏百分之一有20mV(即20mV/ f0)。
圖11所示為當567作為音調開關時,引腳2輸出和引腳8輸出之間的時間關系。圖中所示為在兩種帶寬(14%和7%)下的時間關系。
引腳1給出567正交相位檢波的輸出。當音調鎖定時,在引腳1上的平均電壓是此電路帶內輸入信號幅度的函數(shù),如圖12的傳輸函數(shù)所示。當引腳1上的平均電壓被下拉到3.8V門限值之下時,集電極在引腳8上的內部輸出晶體管就導通。
帶寬的確定
當567被用作音調開關時,其帶寬(中心頻率的百分數(shù))的最大值約為14%。此值與25至250mV均方根值的帶內信號電壓成正比。但是,當信號電壓由200變至300mV時,則不影響帶寬。同時,帶寬反比于中心頻率f0和電容器C2的乘積。實際帶寬為:
BW=1070
BW的單位為中心頻率的百分數(shù)(%),而且,Vi≤200mVRMS。式中Vi的單位為V-RMS,C2的單位為uF。
通過試探和誤差處理來選擇C2,一開始可選擇C2的值為C1的2倍。隨后可增加C2的值以減小帶寬,也可減小C2的值以增加帶寬。
檢測帶寬的對稱性
所謂檢測整容的對稱性就是測量此帶寬與中心頻率的對稱程度。對稱性的定義如下:
(fmax+fmin-2f0)/2f
這時fmax和fmin是相應于所檢測頻帶二邊沿的頻率。
如果一個音調開關的中心頻率為100KHz,而帶寬為10KHz,頻帶的邊沿頻率對稱于95KHz和105KHz,這樣,其對稱性為0%。但是,如果其頻帶相當不對稱,邊沿頻率為100KHz和110KHz,其對稱值增加到5%。
如果需要,可以用微調電位器R2和47KΩ的電阻R4在567的引腳2上加一外偏微調電壓,以使對稱值減至0,如圖13所示。將電位器的中間滑動觸點向上移則中心頻率降低,向下移則中心頻率升高。硅二極管D1和D2用作溫度補償。
以圖13所示的典型電路為基礎,很容易設計出實用的音調開關。頻率控制元件電阻R1和電容C1各值的選定可利用圖6的諾模圖。電容C2容量的選擇可以上述討論為基礎,由實驗確定。一開始可用其容量為C1的兩倍的電容,然后,若有需要可調整其值,以給出所要求的信號帶寬。如果對于頻帶的對稱性要求嚴格,可如圖13所示,加一對稱性調整級。
最后,使C3之值為C2的2倍。并檢查此電路的響應。如果C3太小,引腳8上的輸出可能會在開關期間因過渡歷程而發(fā)生脈沖。如C3選擇適當,則整個電路設計完畢。
可以從一個音頻輸入饋入任意多個567音調開關,以構成任何所希望規(guī)模的多音調開關網絡。圖14和圖15是二種實用的兩級開關網絡。
在圖14中的電路有雙音解碼器的作用。在二個輸入輸入信號中有任一個出現(xiàn)時,都可激勵出一個信號輸出。圖中,二個音調開關是由是一個信號源激勵的,而其輸出則由一個CD4001B型CMOS門集成塊來進行或非處理。圖15所示為二個567音調開關并行聯(lián)接,其作用有中一個相對帶寬為24%的單個音調開關。在此電路中,IC1音調開關的工作頻率設計成比IC2音調開關的工作頻率高1.12倍。因此,它們的轉接頻帶是疊合的。
圖4和圖5的電路可以用不同的方式修改,如圖7至圖10所示。在圖7中,占空比或傳號/空號之比對所產生的波形而言是完全可變的,借助微調電位器R2,其變化范圍為27∶1至1∶27。另外,在每個工作周期內,C1交替充放電,充電是經電阻R1、二極管D1和R2的左側,而放電則通過電阻R1、二極管D2和R2的右側。只是隨著傳號/空號比率的改變,工作頻率略有改變。
圖8所示的電路可以產生正交方波,此振蕩器在引腳5和8上的二個方波輸出有90°的相位差。在此電路中,輸入引腳3通過接地。如果在引腳3上加有2.8V以上的偏置電壓,則引腳8上的方波有180°相移。
圖9和圖10所示為定時電阻值最大可為500KΩ左右的振蕩器的電路。這樣,定時電容C1之值即可按比例減小。在這二個電路中,在567的引腳6和R1、C1的節(jié)點間接有一個緩沖級。
在圖9中,這個緩沖級是一級晶體管射極跟隨器。踞遺憾的是,這一級的引入使波形的對稱性略差。相對應的是,圖10所示電路以一級運算放大器跟隨器作為緩沖級。這樣就不影響波形的對稱性。
晶體管相關文章:晶體管工作原理
晶體管相關文章:晶體管原理 手機充電器相關文章:手機充電器原理 鎖相環(huán)相關文章:鎖相環(huán)原理
評論