高清視頻CMOS電流舵數(shù)/模轉(zhuǎn)換器的設(shè)計(jì)
圖2是一個(gè)說明8位分段式電流舵基本結(jié)構(gòu)的例子。圖中采用6+2分段結(jié)構(gòu),高6位數(shù)字信號(hào)通過行譯碼器(Rows Decoders)、列譯碼器(Columns Decod-ers)轉(zhuǎn)換為溫度計(jì)碼,分別控制26-1=63個(gè)單位電流源,構(gòu)成8×8電流源矩陣。多余的一個(gè)電流源作為Dummy器件,63個(gè)單位電流源和低2位二進(jìn)制加權(quán)電流源的電流之和形成了陣列中整體電流源的電流。
2 譯碼邏輯電路
在DAC設(shè)計(jì)中,電流源單元、譯碼器和消除毛刺(噪聲)結(jié)構(gòu)是重要部分,DAC的性能由這些部分決定。為了改進(jìn)在高頻率動(dòng)態(tài)線性,在此提出由傳輸門和晶體管組成組合邏輯譯碼電路。
2.1 傳輸門邏輯
因?yàn)镹MOS管可以通過邏輯變量0傳輸,PMOS管可以通過邏輯變量1傳輸,用這兩個(gè)MOS平行放置構(gòu)成互補(bǔ)結(jié)構(gòu)。在此,可以得到傳輸門(TG),并且對(duì)于TG,邏輯變量0,1都可以很好的傳輸。大家都知道,譯碼器之間的延遲時(shí)間是毛刺發(fā)生的主要原因,并且與全部使用CMOS邏輯電路比較,用TG設(shè)計(jì)的邏輯電路性能更好,延遲更小。經(jīng)過驗(yàn)證,所有二輸入邏輯門的可由傳輸門和反相器組成。作為一個(gè)事例,實(shí)現(xiàn)與非門邏輯,全部CMOS技術(shù)要求6只晶體管,但采用TG結(jié)構(gòu)只需要5只晶體管。在內(nèi)在DAC芯片上,它有兩個(gè)信號(hào),并且有翻轉(zhuǎn)信號(hào),因此沒有反相器的需要,因而二只晶體管被減少。實(shí)驗(yàn)結(jié)果說明,芯片面積和功耗的大大減少了。
2.2 邏輯譯碼電路
為減小功耗和減少延時(shí),應(yīng)該設(shè)計(jì)最少邏輯水平的行和列譯碼,運(yùn)用TG邏輯電路組成3~8位行、列譯碼器。如此從高3位得到行譯碼器和從中間3位輸入得到列譯碼器。運(yùn)用TG的行譯碼器電路如圖3所示。
行譯碼器結(jié)構(gòu)與列譯碼器基本相同,但沒有電源節(jié)點(diǎn)。使用TG邏輯譯碼器的另一巨大好處是可以減少晶體管的數(shù)量。在靜態(tài)邏輯,參考文獻(xiàn)[9]的譯碼器由84 只晶體管組成,但用TG結(jié)構(gòu)組成的行和列譯碼器有30只晶體管,并且總數(shù)是60。這意味著芯片面積可能也被減少。較少的晶體管級(jí)數(shù)也幫助減少延時(shí)。另一方面,使用TG結(jié)構(gòu)的邏輯門最大級(jí)數(shù)可減少到2級(jí);不使用傳輸門結(jié)構(gòu)的全CMOS結(jié)構(gòu)的最高門級(jí)數(shù)是3,以上充分說明使用TG結(jié)構(gòu)更有利減少延時(shí)和改進(jìn)工作頻率。表1給出相關(guān)的參量對(duì)比。
2.3 工作原理
用行列譯碼器進(jìn)行譯碼,單位電流源是導(dǎo)通還是截止,共有三種情況。第一種是所在行和下一行都是“1”,在這種情況下,無論列控制信號(hào)是否為“1”,該電流源均被選中。也就是說,對(duì)應(yīng)的電流源開關(guān)狀態(tài)為接通狀態(tài)。第二種情況是所在的行控制信號(hào)為“1”,但是下一行的控制信號(hào)為“0”,這時(shí),電流源是否被選中,要根據(jù)列控制信號(hào)來決定。如果列控制信號(hào)為“1”,則該電流源被選中;如果列控制信號(hào)為“0”,則該電流源不被選中,處于截止?fàn)顟B(tài)。第三種情況是所在行和下一行的控制信號(hào)均為“0”,那么不管其所在列的控制信號(hào)為多少,此電流源不會(huì)被選中,處于截止?fàn)顟B(tài)。TG構(gòu)成的開關(guān)電路如圖4所示。
3 電流源電路及減少毛刺電路
電流源電路是DAC的重要部分,同時(shí)為了減小毛刺反應(yīng),下面將介紹減少毛刺的電路。
3.1 電流單元
一般常用的設(shè)計(jì)均采用減少電路噪聲和降低電流源的復(fù)雜結(jié)構(gòu)。例如,差分電路、偏置電路、參考電流等需要很多數(shù)量的晶體管。在這個(gè)設(shè)計(jì)中,使用一個(gè)簡(jiǎn)單的電流單元結(jié)構(gòu),并且電流源采用由二只晶體管組成的電流源單元。與其他芯片相比,電路的面積可以大大減小,如圖5所示。
基爾霍夫電流相關(guān)文章:基爾霍夫電流定律
電流傳感器相關(guān)文章:電流傳感器原理
評(píng)論