Σ-Δ ADC應用筆記
本應用筆記旨在幫助設計人員在高性能、多通道數(shù)據(jù)采集系統(tǒng)(DAS)設計中優(yōu)化工業(yè)傳感器與高性能ADC之間的連接電路。以電網(wǎng)監(jiān)測系統(tǒng)為例,本文說明了使用MAX11040 Σ-Δ ADC的優(yōu)勢以及如何選擇適當?shù)募軜?gòu)和外圍器件,優(yōu)化系統(tǒng)性能。
引言
許多高端工業(yè)應用中,高性能數(shù)據(jù)采集系統(tǒng)(DAS)與各種傳感器之間需要提供適當?shù)慕涌陔娐?。如果信號接口要求提供多通道、高精度的幅度和相位信息,這些工業(yè)應用可以充分利用MAX11040等ADC的高動態(tài)范圍、同時采樣以及多通道優(yōu)勢。本文介紹了MAX11040的Σ-Δ架構(gòu),以及如何合理選擇設計架構(gòu)和外部元件,以獲得最佳的系統(tǒng)性能。
高速、Σ-Δ架構(gòu)的優(yōu)勢
圖1所示為高端三相電力線監(jiān)視/測量系統(tǒng),這類工業(yè)應用需要以高達117dB的動態(tài)范圍、64ksps采樣速率精確地進行多通道同時采集數(shù)據(jù)。為了獲得最高系統(tǒng)精度,必須正確處理來自傳感器(例如,圖1中的CT、PT變壓器)的信號,以滿足ADC輸入量程的要求,從而保證DAS的性能指標滿足不同國家相關(guān)標準的要求。
圖1. 基于MAX11040的DAS在電網(wǎng)監(jiān)控中的應用
從圖1可以看到,采用兩片MAX11040 ADC可以同時測量交流電的三相及零相的電壓和電流。該ADC基于Σ-Δ架構(gòu),利用過采樣/平均處理得到較高的分辨率。每個ADC通道利用其專有的電容開關(guān)Σ-Δ調(diào)制器進行模/數(shù)轉(zhuǎn)換。該調(diào)制器將輸入信號轉(zhuǎn)換成低分辨率的數(shù)字信號,它的平均值代表輸入信號的量化信息,時鐘頻率為24.576MHz時對應的采樣率為3.072Msps。數(shù)據(jù)流被送入內(nèi)部數(shù)字濾波器處理,消除高頻噪聲。處理完成后可以得到高達24位的分辨率。
MAX11040為4通道同時采樣ADC,其輸出數(shù)據(jù)是處理后的平均值,這些數(shù)值不能像逐次逼近(SAR) ADC的輸出那樣被看作是采樣“瞬間”的數(shù)值¹,²。
MAX11040能夠為設計人員提供SAR架構(gòu)所不具備的諸多功能和特性,包括:1ksps采樣率下高達117dB的動態(tài)范圍;積分非線性和微分非線性(INL、DNL)也遠遠優(yōu)于SAR ADC;獨特的采樣相位(采樣點)調(diào)節(jié)能夠從內(nèi)部補償外部電路(驅(qū)動器、變壓器、輸入濾波器等)引入的相位偏移。
另外,MAX11040集成一個數(shù)字低通濾波器,處理每個調(diào)制器產(chǎn)生的數(shù)據(jù)流,得到無噪聲、高分辨率的數(shù)據(jù)輸出。該低通濾波器具有復雜的頻率響應函數(shù),具體取決于可編程輸出數(shù)據(jù)率。輸入端的阻/容(RC)濾波器結(jié)合MAX11040的數(shù)字低通濾波器,大大降低了MAX11040輸入信號通道抗混疊濾波器的設計難度,甚至可以完全省去抗混疊濾波器。表1列舉了MAX11040的部分特性,關(guān)于MAX11040數(shù)字低通濾波器或表中列出的特性指標的詳細信息,請參考器件數(shù)據(jù)資料。
表1. MAX11040 ADC的關(guān)鍵指標
Part | Channels | Input range (VP-P) | Resolution (Bits) | Speed (ksps, max) | SINAD (1ksps) (dB) | Input impedance |
MAX11040 | 4 | ±2.2 | 24 | 64 | 117 | High, (130kΩ, approx) |
電力線應用對ADC性能的要求
電力線監(jiān)控應用中,CT (電流)互感器和PT (電壓)互感器輸出范圍的典型值為:±10V或±5V峰峰值(VP-P)。而MAX11040的輸入量程為
連接到通道1的電路代表一個單端設計,這種配置下,變壓器的一端接地,通過一個簡單的電阻分壓器和電容完成信號調(diào)理。
對于共模噪聲(該噪聲在ADC的兩個輸入端具有相同幅度)比較嚴重的應用場合,推薦采用圖中通道4所示差分連接電路。利用MAX11040的真差分輸入大大降低共模噪聲的影響。
圖2. MAX11040在電力線監(jiān)控典型應用中的原理框圖,圖中給出了一個±10V或±5V輸出的變壓器接口。通道4接口電路采用差分設計,通道1采用單端設計。
PT和CT測量變壓器相當于低阻互感器(等效阻抗RTR通常在10Ω至100Ω量級)。為方便計算,以下示例中假設:變壓器相當于一個有效輸出電阻RTR = 50Ω的電壓源;為便于演示,變壓器可以由一個50Ω輸出阻抗的低失真函數(shù)發(fā)生器代替,如圖3所示。MAX11040的輸入阻抗與時鐘速率、ADC輸入電容有關(guān)。連接適當?shù)呐月冯娙軨3,設定XIN時鐘頻率 = 24.576MHz,則得到輸入阻抗RIN等于130kΩ ±15%,誤差取決于內(nèi)部輸入電容的波動。
R1、R2組成的電阻分壓網(wǎng)絡將±10V或±5V輸入信號轉(zhuǎn)換成ADC要求的±2.2V滿量程范圍(FSR)。為確保該電路工作正常,需要優(yōu)化R1和R2電阻值,以及C1、C2和C3電容的選擇,以滿足±10V或±5V輸入的要求。電阻R1和R2必須有足夠高的阻抗,避免CT和PT變壓器輸出過載。同時,R2阻值還要足夠小,以避免影響ADC的輸入阻抗(R2 RIN)。
對于單端設計,圖2中MAX11040通道1的輸入電壓VIN(f),可以利用式1計算:
(式1)
式中:
VTR是CT和PT變壓器的輸出電壓。
RTR是變壓器的等效阻抗。
R1、R2構(gòu)成電阻分壓網(wǎng)絡。
RIN是MAX11040的輸入阻抗。
R2llRIN是R2和RIN的并聯(lián)阻抗。
C3為輸入旁路電容。
f是輸入信號頻率。
VIN(f)是MAX11040的輸入電壓。
評論