單片機的自組織網(wǎng)絡互同步節(jié)點設(shè)計
摘要:針對自組織網(wǎng)絡中的互同步算法進行了研究,基于單片機設(shè)計了一種便于驗證學習的實體節(jié)點,彌補了單純軟件仿真的不足。該設(shè)計具有簡單直觀、網(wǎng)絡規(guī)模擴展靈活的特點,對于掌握無線傳感網(wǎng)或多智能體等進行同步和協(xié)調(diào)的自組織組網(wǎng)技術(shù)有一定的借鑒意義。
關(guān)鍵詞:單片機; 自組織網(wǎng)絡; 互同步
引言
隨著無線網(wǎng)絡與電子技術(shù)的發(fā)展和普及,各類專業(yè)設(shè)備甚至民用產(chǎn)品之間的數(shù)據(jù)傳輸已經(jīng)不滿足于簡單的點對點形式,對組網(wǎng)的需求日益突出。為了應對這一需求,自組織網(wǎng)絡技術(shù)應運而生。
自組織網(wǎng)絡的突出特點是,沒有傳統(tǒng)的中心控制節(jié)點來協(xié)調(diào)組網(wǎng)過程,分布的節(jié)點之間的組織主要靠“臨時性的自治”實現(xiàn)。實現(xiàn)無線自組織網(wǎng)絡的基礎(chǔ)之一是網(wǎng)絡互同步技術(shù)。該技術(shù)通過網(wǎng)絡節(jié)點之間時間基準的相互交換和相互控制,實現(xiàn)節(jié)點之間的相互同步。
由于無線節(jié)點硬件成本偏高,相關(guān)軟件使用也較為復雜,在進行相關(guān)技術(shù)的研究和學習時,大多通過計算機軟件仿真。這種純粹軟件仿真實驗的形式更適用于已有一定的實踐經(jīng)驗和算法基礎(chǔ)的人員,對于其進行更專業(yè)的算法學習和研究有較大幫助。但由于缺乏具體的實物,初學者難以建立起直觀的感性認識。
為此,本設(shè)計首先選擇低成本的單片機作為核心,利用簡單的光電信號替代WiFi、藍牙等無線通信形式,最大程度地降低了硬件制作成本。其次,剔除了復雜的通信協(xié)議棧,僅關(guān)注于自組織網(wǎng)絡中互同步技術(shù)的核心算法實現(xiàn),最大程度地簡化了學習的難度。所設(shè)計的節(jié)點組成的學習平臺不僅簡單直觀,而且可以根據(jù)需要驗證各類不同算法,網(wǎng)絡規(guī)模也可靈活調(diào)整,不受節(jié)點數(shù)量增加的限制。
1 節(jié)點硬件設(shè)計
綜合考慮成本、供電和算法更新等方面,選擇ATtiny13A-10pu作為仿真節(jié)點的核心。該芯片是一款低功耗的8位微處理器,可以工作在0~4 MHz@1.8~5.5 V狀態(tài),用一粒普通的CR2032紐扣電池就可以為其提供3 V供電,內(nèi)部有1 KB Flash RAM,64字節(jié)RAM和64字節(jié)EEPROM,空間雖然不大,但做基本算法驗證已經(jīng)夠用。除此之外它還有4路10位ADC可作為光電信號檢測之用。在光電檢測元件方面采用的是常見的光敏電阻5516,當然也可以選擇性能更穩(wěn)定、一致性更好的環(huán)保光敏電阻。
除了上面所述的單片機、光敏電阻以外,節(jié)點還需要有一個發(fā)光二極管用于顯示各節(jié)點間的同步狀態(tài)。當初始亮滅不一致的節(jié)點經(jīng)過一段時間后,以相同時間點、頻率進行閃爍,這時表示網(wǎng)絡同步成功。對發(fā)光二極管只要求電壓電流適當即可,設(shè)計中選擇的是1.7 V、2 mA的低電流發(fā)光二極管,低電流更有利于延長節(jié)點電池的工作時長。
整個電路力求簡潔,因而沒有設(shè)計復位電路。另外,由于片內(nèi)振蕩器已經(jīng)進行了9.6 MHz的標定,經(jīng)8分頻后可以實現(xiàn)1.2 MHz的系統(tǒng)時鐘,已經(jīng)可以滿足本設(shè)計的需要,所有也無需外接晶振。電路原理圖如圖1所示。
需要注意的是,圖中電阻R1、R2阻值的具體選擇和電源電壓、發(fā)光二極管及光敏電阻的參數(shù)有關(guān)。電阻R1的作用主要是限流,其阻值可參考公式R1=(Up-U1)/I1選擇,其中Up為供電電壓,U1為發(fā)光二極管壓降,I1為發(fā)光二極管的電流。電阻R2的阻值主要受到光敏電阻R3工作效果的影響,選定的原則主要由保證光敏電阻在日光下可以對光線變化作出反應的靈敏程度來決定,在最初確定時可以用電位計來替換固定電阻R2,通過試驗,1 kΩ阻值的電阻已經(jīng)可以保證節(jié)點正常工作。
另外,如果不采用節(jié)點間相互分離的獨立電路設(shè)計,而采用多個節(jié)點固定在同一塊底板上的布線,也可以不采用獨立的紐扣電池供電方式,統(tǒng)一為所有的節(jié)點提供5 V電源供電。
2 算法設(shè)計與實現(xiàn)
2.1 互同步算法原理
為了更好地對算法進行解釋,首先簡單介紹自組織網(wǎng)絡的生物原型。在自然界中有很多自組織的生物系統(tǒng),在這些系統(tǒng)中,個體一般不具備高智商,對信息的獲取和處理能力也十分有限,盡管如此,整個系統(tǒng)卻可以在群體行為上呈現(xiàn)出令人吃驚的統(tǒng)一性和協(xié)同性。比如魚群、鳥群等生物群體在集體活動時,雖然沒有一個中心指揮,系統(tǒng)整體狀態(tài)仍然可以依賴構(gòu)成系統(tǒng)的個體間的相互作用,形成一個有機整體。
在這里只研究這一行為實現(xiàn)的基礎(chǔ),互同步的相關(guān)算法。算法的實現(xiàn)非常類似于螢火蟲同步閃爍,本設(shè)計最終呈現(xiàn)的效果也是模擬一個有眾多“螢火蟲”(節(jié)點)的網(wǎng)絡同步。
開始的時候,眾多獨立節(jié)點發(fā)光二極管的閃爍是隨機的。但是,隨著時間的推移,它們能夠慢慢地與最近的鄰居同步,隨著時間的推移,最后所有的節(jié)點都同步閃爍。
本設(shè)計采用了一種最簡單的算法來實現(xiàn)這一過程。首先假設(shè)所有節(jié)點的閃爍頻率是相同的,這就類似于同一種群的螢火蟲具有相同的閃爍頻率一樣,它們最初呈現(xiàn)的不同步其實只是各自閃爍的時間點不一樣。這樣在簡化算法實現(xiàn)的同時,并不失其普遍意義。
算法中設(shè)定了一個變量,閃爍能力(Power),用于表示節(jié)點閃爍的能力,這個值隨著時間會慢慢增加,當其增加到一個臨界閾值(Pth)時,節(jié)點的發(fā)光二極管開始閃爍,隨之這種能力開始逐漸“消耗”,即閃爍能力減小。閃爍能力的變化過程默認對于所有的節(jié)點都是一樣的,也就是說所有節(jié)點閃爍的固有頻率是一樣的。
通過光敏電阻,每個節(jié)點都可以感受到鄰近節(jié)點的存在,這個過程是通過單片機的ADC實現(xiàn)的。這些節(jié)點都依據(jù)相同的原則進行同步。如果某個節(jié)點發(fā)現(xiàn)它比鄰近節(jié)點閃爍得晚,那么下次它將稍稍提前閃爍,經(jīng)過節(jié)點間的相互作用,所有的節(jié)點最終會在同一時刻按照相同的頻率閃爍。這個方法雖然簡單,但卻十分有效,基于它的進一步研究已經(jīng)在Ad Hoc網(wǎng)絡的互同步中得到應用。相關(guān)算法如圖2所示。
評論