基于C8051單片機的無線心電監(jiān)護系統(tǒng)設計
為充分利用A/D轉換的精度,在轉換前先將信號放大到A/D轉換器電路參考電壓的70%左右,考慮到信號中有附加的直流成分,需在A/D轉換電路前增加電平調節(jié)電路。個體心電幅度的差異要求電路中設計程控放大電路,又為便于心電信號的標定和考慮到實際器件放大倍數(shù)與理論值的偏差,在程控放大前設置一個手動可調的放大電路(1~10倍)。綜合上述分析,心電采集與程控放大部分應包括:AD620前端放大、0.05~100 Hz的帶通濾波、50Hz陷波、手動放大、程控放大和電平提升等電路,如圖2所示。其中程控放大功能的實現(xiàn)主要利用CD4051電子開關的數(shù)字選通功能,能夠實現(xiàn)1~50倍的調節(jié)范圍。
2.3 NRF24L01無線發(fā)射電路
NRF24L01是單片射頻收發(fā)器件,工作于2.4~2.5 GHzISM頻段,工作電壓為1.9~3.6 V,有多達125個頻道可供選擇。通過SPI寫人數(shù)據(jù),其速率最高可達10 Mb/s,數(shù)據(jù)傳輸速率最高可達2Mb/s,并有自動應答和自動再發(fā)射功能。和上一代NRF2401相比,NRF24L01數(shù)據(jù)傳輸率更快,數(shù)據(jù)寫入速度更高,內嵌的功能更完備。器件內置頻率合成器、功率放大器、晶體振蕩器、調制器等功能模塊,并融合增強式ShockBurst技術,其中輸出功率和通信頻道可通過程序配置。器件能耗非常低,以-6 dBmW的功率發(fā)射工作電流僅9 mA,接收時工作電流只有12.3 mA,多種低功率工作模式(掉電模式和空閑模式)使節(jié)能設計更方便。結合C8051F320內部資源.采用自帶的SPI接口控制NRF24L01的讀寫,節(jié)省硬件資源也方便軟件的編寫。圖3為無線發(fā)射控制電路。
2.4 PC監(jiān)護終端設計
C8051F320集成了全速/低速USB功能控制器,用于實現(xiàn)USB接口的外部設備(不能被用作USB主設備)。USB功能控制器(USB0)由串行接口引擎(SIE)、USB收發(fā)器(包括匹配電阻和可配置上拉電阻)、1 KB FIFO存儲器和時鐘恢復電路(可以不用晶體)組成,無需外部元件。USB功能控制器和收發(fā)器符合通用串行總線規(guī)范2.0版。監(jiān)護終端中的單片機也采用 C8051F320,無線接收部分和圖3相同。C8051F320通過自帶的USB接口與PC進行數(shù)據(jù)通信(見圖1)。
3 系統(tǒng)軟件設計
3.1 數(shù)據(jù)采集盒程序設計
數(shù)據(jù)采集盒中以C8051F320單片機為核心,該器件是完全集成的混合信號片上系統(tǒng)MCU,具有以下特性:(1)高速、流水結構的8051兼容的微控制器內核(可達25 MI/s);(2)全速、非侵入式的在系統(tǒng)調試接口(片內);(3)通用串行總線(USB)功能控制器,有8個靈活的端點管道、集成收發(fā)器以及1 KB FIFO RAM;(4)真正10位200 ks/s的17通道單端/差分A/D轉換器,帶模擬多路器;(5)硬件實現(xiàn)的SMBus/I2C、增強型UART和增強型SPI串行接口。
采集參數(shù)分析與確定:(1)心電能量主要分布在0.05~100 Hz之間,根據(jù)采樣定理可知A/D轉換器的采樣頻率應大于200 Hz。綜合考慮A/D轉換器采樣速度高和低功耗,將其采樣率設置為2000Hz;(2)由于A/D轉換器每次采樣時問并不相等,所以采用TIME2定時器觸發(fā)每個采樣周期;(3)為提高傳輸速度和數(shù)據(jù)傳輸效率以及達到低功耗的要求,將NRF24L01設置為數(shù)據(jù)塊傳輸模式,每采樣32個點發(fā)起一次無線數(shù)據(jù)傳輸;(4)C8051 F320中的SPI口設置為4線主方式,NRF24L01的SPI為從方式。這樣不僅滿足實時采樣要求,還充分利用硬件資源和能源。圖4為數(shù)據(jù)采集盒軟件流程。
3.2 PC監(jiān)護終端軟件設計
3.2.1 C8051F320固件程序
單片機與NRF24L01間通過SPI接口交換數(shù)據(jù),USB設置為塊狀傳輸模式與PC機進行數(shù)據(jù)通信。為和數(shù)據(jù)采集盒相兼容,仍將每32個數(shù)據(jù)打成一個數(shù)據(jù)包,也可充分利用硬件資源并提高數(shù)據(jù)傳輸效率。其流程圖與數(shù)據(jù)采集盒類似。
評論