<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 高效率綠色模式開關(guān)電源控制器設(shè)計方案

          高效率綠色模式開關(guān)電源控制器設(shè)計方案

          作者: 時間:2012-07-23 來源:網(wǎng)絡(luò) 收藏

          當(dāng)變換器工作在Burst 時,電感電流峰值的最小值被控制在150mA 左右,不再隨著負(fù)載的降低而降低,即Vpeak 信號不再受誤差放大器輸出控制。 Bur st 工作狀態(tài)和休眠狀態(tài)(sleep mode) 的切換主要由一個Bur st 比較器控制。 該比較器是一個典型的遲滯比較器,它的遲滯窗口直接決定了在Bur st 工作下輸出電壓的紋波大小。 輸出電壓的波動反饋到Bur st 比較器,當(dāng)反饋電壓超過比較器上限時,Bur st 比較器輸出會強(qiáng)制功率開關(guān)關(guān)斷幾個周期,進(jìn)入休眠狀態(tài);反之,當(dāng)反饋電壓低于比較器下限時,Burst 比較器的輸出允許功率開關(guān)按正常方式工作。 因此,在工作情況下,功率開關(guān)的開關(guān)頻率依然是恒定的,而且,在負(fù)載恒定的情況下,休眠狀態(tài)和工作狀態(tài)的交替過程也是按恒定頻率進(jìn)行的。 每個Burst 工作過程視負(fù)載變化而定:在非常輕的負(fù)載下只持續(xù)幾個周期,而在重載情況下可能持續(xù)多個周期或者保持連續(xù)工作。 在Bur st 工作周期之間的休眠階段,功率開關(guān)和其他一些不必要的電路都被關(guān)斷,從而進(jìn)一步減小靜態(tài)功耗,此時的負(fù)載電流完全由輸出電容供給。

          2. 3 模式轉(zhuǎn)換

          在多模式控制的變換器中,由于在輕重載條件下采用不同的控制策略,會在負(fù)載變化和模式切換的時候產(chǎn)生一些問題:一是當(dāng)負(fù)載電流正好在所設(shè)定的模式切換點附近波動時,會使變換器在兩種工作模式間反復(fù)切換,極容易造成工作狀態(tài)不穩(wěn)定;二是在模式切換的瞬間會產(chǎn)生較大的過沖電壓,導(dǎo)致器件損壞。 這是多模式變換器普遍存在的一個嚴(yán)重缺陷。 針對這一缺陷,本文提出一種雙基準(zhǔn)解決,即對PWM 模式和Bur st 模式采用不同的基準(zhǔn)電壓,這樣不但可以實現(xiàn)如前所述的模式切換過程中的遲滯功能,且可抑制一部分過沖電壓。 模式切換時的工作原理如圖4所示。

          圖4  模式切換時的工作原理

          圖4  模式切換時的工作原理

          在Bur st 工作模式中,控制輸出電壓略高于PWM 工作模式中的輸出電壓,中,Bur st 下限高于EA 基準(zhǔn)的016 % ,上限高于EA 基準(zhǔn)的117 %. 當(dāng)負(fù)載較重時,變換器工作在PWM 模式,當(dāng)負(fù)載下降到一定值時,電感電流的峰值不再隨著負(fù)載的變化而變化,輸出電壓上升,直到達(dá)到Bur st 比較器上限時才會控制功率開關(guān)關(guān)斷,變換器進(jìn)入到Burst 工作模式。 類似,當(dāng)負(fù)載從輕載變到重載,電感電流峰值需要隨著負(fù)載變化而調(diào)整時,輸出電壓下降,直到達(dá)到EA 基準(zhǔn)變換器才回到PWM 工作模式。 這就相當(dāng)于在模式切換的負(fù)載條件之間形成了一個遲滯窗口,窗口的下限是EA 基準(zhǔn),上限是Bur st 比較器上限。 另一方面,設(shè)置兩個基準(zhǔn),還可以在模式轉(zhuǎn)換時提供一個電壓余量,起到抑制過沖電壓的作用。

          3 片上電流檢測

          片上電流檢測就是把檢測電感電流的功能集成到控制芯片內(nèi)部,尤其對于功率集成的來說,其意義就顯得更為重要也較易實現(xiàn),且采用片上電流檢測有利于有效簡化外圍應(yīng)用電路的。

          電流檢測可以根據(jù)檢測電路的不同位置分為高邊檢測和低邊檢測,對于Buck 電路來說,若檢測對象是流過功率開關(guān)的電流,多采用高邊檢測;但若檢測對象是流過同步整流開關(guān)的電流,就需采用低邊檢測。 以高邊檢測為例,傳統(tǒng)的檢測方法是利用一個小電阻與功率開關(guān)串聯(lián)來檢測流過功率開關(guān)的電流。 但受到工藝的限制,小電阻的阻值精度通常是很低的,且會占用較多的芯片面積。 尤其在低電壓供電的系統(tǒng)中,檢測電阻上的損耗和檢測精度都是嚴(yán)重的問題。 因此,本文采用了一種基于電流鏡結(jié)構(gòu)的片上電流檢測技術(shù),與傳統(tǒng)的電阻檢測方法相比,它的精度較高,功率損耗小。

          電流檢測電路主要有兩個功能模塊,一是功率開關(guān)電流檢測模塊,二是峰值電流箝位模塊。

          功率開關(guān)電流檢測的基本電路原理如圖5 所示。 主要采用電流鏡結(jié)構(gòu),用一個與功率開關(guān)成一定比例的MOS 管來鏡像功率開關(guān)的電流。 圖中PM_P 是功率開關(guān),NM_P 是同步整流開關(guān)。 PMOS 管PM0 和PM_P組成一個簡單電流鏡結(jié)構(gòu)。 運算放大器CSA 的作用是保持PM0 和PM_P 的V DS電壓相等,它是一個兩級折疊式共源共柵結(jié)構(gòu),具有較大的帶寬和較快的響應(yīng)速度,以達(dá)到較高的檢測精度和較大的電流檢測范圍。

          圖5  功率開關(guān)電流檢測模塊

          圖5  功率開關(guān)電流檢測模塊

          PM1 的作用是防止當(dāng)同步整流開關(guān)通時,CSA + 端短路到地。 如果在功率開關(guān)關(guān)斷的時候CSA + 短路到地,則每個周期功率開關(guān)開始打開的時候,CSA + 需要較長的恢復(fù)時間,會影響檢測精度。 另一方面,功率開關(guān)導(dǎo)通時是工作在線性區(qū),因此PM0 和PM_ P 的V DS電壓差對電流鏡的鏡像精度影響較大,所以PM1 必須具有較小V DS值,可以適當(dāng)?shù)卦龃笏膶掗L比。

          中,取PM0 和PM_ P 的寬長比的比值為1 ∶3000 ,因此流過PM0 和PM_ P 的電流比值也為1 ∶3000. 可得檢測電壓V IL 為:

          其中

          ; IL 為流過功率開關(guān)的電流,也直接反映了電感電流的信息。



          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();