工程師不可不知的開關電源關鍵設計(六)
牽涉到開關電源技術設計或分析成為電子工程師的心頭之痛已是不爭的事實,推出《工程師不可不知的開關電源關鍵設計》系列六和工程師們一起分享,請各位繼續(xù)關注后續(xù)章節(jié)。
本文引用地址:http://www.ex-cimer.com/article/176923.htm摘要:為了適應車載用電設備的需求,采用推挽逆變-高頻變壓-全橋整流方案設計了24VDC輸入-220VDC輸出、額定輸出功率600W的DC-DC變換器,并采用AP法給出了高頻推挽變壓器的設計過程。在詳細分析推挽逆變工作原理的基礎上,給出了實際設計中的注意事項。實驗結果表明該方案是一種理想的車載DC-DC變換器設計方案。
隨著現(xiàn)代汽車用電設備種類的增多,功率等級的增加,所需要電源的型式越來越多,包括交流電源和直流電源。這些電源均需要采用開關變換器將蓄電池提供的+12VDC或+24VDC的直流電壓經(jīng)過DC-DC變換器提升為+220VDC或+240VDC,后級再經(jīng)過DC-AC變換器轉換為工頻交流電源或變頻調(diào)壓電源。對于前級DC-DC變換器,又包括高頻DC-AC逆變部分、高頻變壓器和AC-DC整流部分,不同的組合適應不同的輸出功率等級,變換性能也有所不同。推挽逆變電路以其結構簡單、變壓器磁芯利用率高等優(yōu)點得到了廣泛應用,尤其是在低壓大電流輸入的中小功率場合;同時全橋整流電路也具有電壓利用率高、支持輸出功率較高等特點,因此本文采用推挽逆變-高頻變壓器-全橋整流方案,設計了24VDC輸入-220VDC 輸出、額定輸出功率600W的DC-DC變換器,并采用AP法設計相應的推挽變壓器。
1、推挽逆變的工作原理
圖1給出了推挽逆變-高頻變壓-全橋整流DC-DC變換器的基本電路拓撲。通過控制兩個開關管S1和S2以相同的開關頻率交替導通,且每個開關管的占空比d均小于50%,留出一定死區(qū)時間以避免S1和S2同時導通。由前級推挽逆變將輸入直流低電壓逆變?yōu)榻涣鞲哳l低電壓,送至高頻變壓器原邊,并通過變壓器耦合,在副邊得到交流高頻高電壓,再經(jīng)過由反向快速恢復二極管FRD構成的全橋整流、濾波后得到所期望的直流高電壓。由于開關管可承受的反壓最小為兩倍的輸入電壓,即2UI,而電流則是額定電流,所以, 推挽電路一般用在輸入電壓較低的中小功率場合。
當S1開通時,其漏源電壓 uDS1只是一個開關管的導通壓降,在理想情況下可假定 uDS1=0,而此時由于在繞組中會產(chǎn)生一個感應電壓,并且根據(jù)變壓器初級繞組的同名端關系,該感應電壓也會疊加到關斷的S2上,從而使S2在關斷時承受的電壓是輸入電壓與感應電壓之和約為2UI.在實際中,變壓器的漏感會產(chǎn)生很大的尖峰電壓加在S2 兩端,從而引起大的關斷損耗,變換器的效率因受變壓器漏感的限制,不是很高。在S1和S2 的漏極之間接上RC緩沖電路,也稱為吸收電路,用來抑制尖峰電壓的產(chǎn)生。并且為了給能量回饋提供反饋回路,在S1和S2 兩端都反并聯(lián)上續(xù)流二極管FWD。
2、開關變壓器的設計
采用面積乘積(AP)法進行設計。對于推挽逆變工作開關電源,原邊供電電壓UI=24V,副邊為全橋整流電路,期望輸出電壓UO=220V,輸出電流IO=3A,開關頻率fs=25kHz,初定變壓器效率η=0.9,工作磁通密度Bw=0.3T.
?。?)計算總視在功率PT.設反向快速恢復二極管FRD的壓降:VDF=0.6*2=1.2V
3、推挽逆變的問題分析
3.1能量回饋
主電路導通期間,原邊電流隨時間而增加,導通時間由驅動電路決定。
圖2(a)為S1導通、S2關斷時的等效電路,圖中箭頭為電流流向,從電源UI正極流出,經(jīng)過S1流入電源UI負極,即地,此時FWD1不導通;當S1關斷時,S2未導通之前,由于原邊能量的儲存和漏電感的原因,S1的端電壓將升高,并通過變壓器耦合使得S2的端電壓下降,此時與S2并聯(lián)的能量恢復二極管FWD2還未導通,電路中并沒有電流流過,直到在變壓器原邊繞組上產(chǎn)生上正下負的感生電壓。如圖2(b);FWD2導通,把反激能量反饋到電源中去,如圖2(c),箭頭指向為能量回饋的方向。
3.2各點波形分析
當某一PWN信號的下降沿來臨時,其控制的開關元件關斷,由于原邊能量的儲存和漏電感的原因,漏極產(chǎn)生沖擊電壓,大于2UI,因為加入了RC緩沖電路,使其最終穩(wěn)定在2UI附近。
當S1的PWN 信號下降沿來臨,S1關斷,漏極產(chǎn)生較高的沖擊電壓,并使得與S2并聯(lián)的反饋能量二極管FWD2導通,形成能量回饋回路,此時S2漏極產(chǎn)生較高的沖擊電流,見圖4。
4、實驗與分析
4.1 原理設計
圖5為簡化后的主電路。輸入24V 直流電壓,經(jīng)過大電容濾波后,接到推挽變壓器原邊的中間抽頭。變壓器原邊另外兩個抽頭分別接兩個全控型開關器件IGBT,并在此之間加入RC吸收電路,構成推挽逆變電路。推挽變壓器輸出端經(jīng)全橋整流,大電容濾波得到220V直流電壓。并通過分壓支路得到反饋電壓信號UOUT。
以CA3524芯片為核心,構成控制電路。通過調(diào)節(jié)6、7管腳間的電阻和電容值來調(diào)節(jié)全控型開關器件的開關頻率。12、13 管腳輸出PWM脈沖信號,并通過驅動電路,分別交替控制兩個全控型開關器件。電壓反饋信號輸入芯片的1管腳,通過調(diào)節(jié)電位器P2給2管腳輸入電壓反饋信號的參考電壓,并與9管腳COM端連同CA3524內(nèi)部運放一起構成PI調(diào)節(jié)器,調(diào)節(jié)PWM脈沖占空比,以達到穩(wěn)定輸出電壓220V的目的。
4.2 結果與分析
實驗結果表面,輸出電壓穩(wěn)定在220V,紋波電壓較小。最大輸出功率能達到近600W,系統(tǒng)效率基本穩(wěn)定在80%,達到預期效果。其中,由于IGBT效率損耗較大導致系統(tǒng)效率偏低,考慮如果采用損耗較小的MOSFET,系統(tǒng)效率會至少上升10%~15%.
注意事項:
(1) 變壓器初級繞組在正、反兩個方向激勵時,由于相應的伏秒積不相等,會使磁芯的工作磁化曲線偏離原點,這一偏磁現(xiàn)象與開關管的選擇有關,原因是開關管反向恢復時間的不同》 可導致伏秒積的不同。
(2)實驗中,隨著輸入電壓的微幅增高,系統(tǒng)損耗隨之增大,主要原因是變壓器磁芯產(chǎn)生較大的渦流損耗,系統(tǒng)效率有所下降。減小渦流損耗的措施主要有:減小感應電勢,如采用鐵粉芯材料;增加鐵心的電阻率,如采用鐵氧體材料;加長渦流所經(jīng)的路徑,如采用硅鋼片或非晶帶。
5、結論
推挽電路特別適用于低壓大電流輸入的中小功率場合,并利用AP法設計了一種高頻推挽變壓器。實驗結果表明推挽逆變-高頻變壓-全橋整流的方案達到了預期的效果,使輸出電壓穩(wěn)定在220V并具有一定的輸出硬度,效率達到80%,為現(xiàn)代汽車電源的發(fā)展提供了一定的發(fā)展空間。
二、開關電源保護電路的研究
1引言
評價開關電源的質(zhì)量指標應該是以安全性、可靠性為第一原則。在電氣技術指標滿足正常使用要求的條件下,為使電源在惡劣環(huán)境及突發(fā)故障情況下安全可靠地工作,必須設計多種保護電路,比如防浪涌的軟啟動,防過壓、欠壓、過熱、過流、短路、缺相等保護電路。同時,在同一開關電源電路中,設計多種保護電路的相互關聯(lián)和應注意的問題也要引起足夠的重視。
2 防浪涌軟啟動電路
開關電源的輸入電路大都采用電容濾波型整流電路,在進線電源合閘瞬間,由于電容器上的初始電壓為零,電容器充電瞬間會形成很大的浪涌電流,特別是大功率開關電源,采用容量較大的濾波電容器,使浪涌電流達100A以上。在電源接通瞬間如此大的浪涌電流,重者往往會導致輸入熔斷器燒斷或合閘開關的觸點燒壞,整流橋過流損壞;輕者也會使空氣開關合不上閘[4]。上述現(xiàn)象均會造成開關電源無法正常工作,為此幾乎所有的開關電源都設置了防止流涌電流的軟啟動電路,以保證電源正常而可靠運行。防浪涌軟啟動電路通常有晶閘管保護法和繼電器保護法兩大類。
?。?) 晶閘管保護法
圖1是采用晶閘管V和限流電阻R1組成的防浪涌電流電路。在電源接通瞬間,輸入電壓經(jīng)整流橋(D1~D4)和限流電阻R1對電容器C充電,限制浪涌電流。當電容器C充電到約80%額定電壓時,逆變器正常工作。經(jīng)主變壓器輔助繞組產(chǎn)生晶閘管的觸發(fā)信號,使晶閘管導通并短路限流電阻R1,開關電源處于正常運行狀態(tài)。
圖1采用晶閘管和限流電阻組成的防浪涌電流電路
?。?)繼電器保護法
圖2是采用繼電器K和限流電阻R1構成的防浪涌電流電路。電源接通瞬間,輸入電壓經(jīng)整流(D1~D4)和限流電阻R1對濾波電容器C1充電,防止接通瞬間的浪涌電流,同時輔助電源Vcc經(jīng)電阻R2對并接于繼電器K線包的電容器C2充電,當C2上的電壓達到繼電器K的動作電壓時,K動作,其觸點K1.1閉合而旁路限流電阻R1,電源進入正常運行狀態(tài)。限流的延遲時間取決于時間常數(shù)(R2C2),通常選取為0.3~0.5s。為了提高延遲時間的準確性及防止繼電器動作抖動振蕩,延遲電路可采用圖3所示電路替代R2C2延遲電路。
3 過壓、欠壓及過熱保護電路
進線電源過壓及欠壓對開關電源造成的危害,主要表現(xiàn)在器件因承受的電壓及電流能力超出正常使用的范圍而損壞,同時因電氣性能指標被破壞而不能滿足要求。因此對輸入電源的上限和下限要有所限制,為此采用過壓、欠壓保護以提高電源的可靠性和安全性。
溫度是影響電源設備可靠性的最重要因素。根據(jù)有關資料分析表明[5],電子元器件溫度每升高2℃,可靠性下降10%,溫升50℃時的工作壽命只有溫升25℃時的1/6,為了避免功率器件過熱造成損壞,在開關電源中亦需要設置過熱保護電路。
圖4 過壓、欠壓、過熱保護電路
圖4是僅用一個4比較器LM339及幾個分立元器件構成的過壓、欠壓、過熱保護電路。取樣電壓可以直接從輔助控制電源整流濾波后取得,它反映輸入電源電壓的變化,比較器共用一個基準電壓,N1.1為欠壓比較器,N1.2為過壓比較器,調(diào)整R1可以調(diào)節(jié)過、欠壓的動作閾值。N1.3為過熱比較器,RT為負溫度系數(shù)的熱敏電阻,它與R7構成分壓器,緊貼于功率開關器件IGBT的表面,溫度升高時,RT阻值下降,適當選取R7的阻值,使N1.3在設定的溫度閾值動作。N1.4用于外部故障應急關機,當其正向端輸入低電平時,比較器輸出低電平封鎖PWM驅動信號。由于4個比較器的輸出端是并聯(lián)的,無論是過壓、欠壓、過熱任何一種故障發(fā)生,比較器輸出低電平,封鎖驅動信號使電源停止工作,實現(xiàn)保護。如將電路稍加變動,亦可使比較器輸出高電平封鎖驅動信號。
4 缺相保護電路
由于電網(wǎng)自身原因或電源輸入接線不可靠,開關電源有時會出現(xiàn)缺相運行的情況,且掉相運行不易被及時發(fā)現(xiàn)。當電源處于缺相運行時,整流橋某一臂無電流,而其它臂會嚴重過流造成損壞,同時使逆變器工作出現(xiàn)異常,因此,必須對缺相進行保護。檢測電網(wǎng)缺相通常采用電流互感器或電子缺相檢測電路。由于電流互感器檢測成本高、體積大,故開關電源中一般采用電子缺相保護電路。圖5是一個簡單的缺相保護電路。三相平衡時,R1~R3結點H電位很低,光耦合輸出近似為零電平。當缺相時,H點電位抬高,光耦輸出高電平,經(jīng)比較器進行比較,輸出低電平,封鎖驅動信號。比較器的基準可調(diào),以便調(diào)節(jié)缺相動作閾值。該缺相保護適用于三相四線制,而不適用于三相三線制。電路稍加變動,亦可用高電平封鎖PWM信號。
圖5 三相四線制的缺相保護電路
圖6是一種用于三相三線制電源缺相保護電路,A、B、C缺任何一相,光耦器輸出電平低于比較器的反相輸入端的基準電壓,比較器輸出低電平,封鎖PWM驅動信號,關閉電源。比較器輸入極性稍加變動,亦可用高電平封鎖PWM信號。這種缺相保護電路采用光耦隔離強電,安全可靠,RP1、RP2用于調(diào)節(jié)缺相保護動作閾值。
圖6 三相三線制的缺相保護電路
5 短路保護
開關電源同其它電子裝置一樣,短路是最嚴重的故障,短路保護是否可靠,是影響開關電源可靠性的重要因素。IGBT(絕緣柵雙極型晶體管)兼有場效應晶體管輸入阻抗高、驅動功率小和雙極型晶體管電壓、電流容量大及管壓降低的特點,是目前中、大功率開關電源最普遍使用的電力電子開關器件[6]。IGBT能夠承受的短路時間取決于它的飽和壓降和短路電流的大小,一般僅為幾μs至幾十μs。短路電流過大不僅使短路承受時間縮短,而且使關斷時電流下降率 過大,由于漏感及引線電感的存在,導致IGBT集電極過電壓,該過電壓可使IGBT鎖定失效,同時高的過電壓會使IGBT擊穿。因此,當出現(xiàn)短路過流時,必須采取有效的保護措施。
為了實現(xiàn)IGBT的短路保護,則必須進行過流檢測。適用IGBT過流檢測的方法,通常是采用霍爾電流傳感器直接檢測IGBT的電流Ic,然后與設定的閾值比較,用比較器的輸出去控制驅動信號的關斷;或者采用間接電壓法,檢測過流時IGBT的電壓降Vce,因為管壓降含有短路電流信息,過流時Vce增大,且基本上為線性關系,檢測過流時的Vce并與設定的閾值進行比較,比較器的輸出控制驅動電路的關斷。
在短路電流出現(xiàn)時,為了避免關斷電流的 過大形成過電壓,導致IGBT鎖定無效和損壞,以及為了降低電磁干擾,通常采用軟降柵壓和軟關斷綜合保護技術。
在設計降柵壓保護電路時,要正確選擇降柵壓幅度和速度,如果降柵壓幅度大(比如7.5V),降柵壓速度不要太快,一般可采用2μs下降時間的軟降柵壓,由于降柵壓幅度大,集電極電流已經(jīng)較小,在故障狀態(tài)封鎖柵極可快些,不必采用軟關斷;如果降柵壓幅度較?。ū热?V以下),降柵速度可快些,而封鎖柵壓的速度必須慢,即采用軟關斷,以避免過電壓發(fā)生。
為了使電源在短路故障狀態(tài)不中斷工作,又能避免在原工作頻率下連續(xù)進行短路保護產(chǎn)生熱積累而造成IGBT損壞,采用降柵壓保護即可不必在一次短路保護立即封鎖電路,而使工作頻率降低(比如1Hz左右),形成間歇“打嗝”的保護方法,故障消除后即恢復正常工作。下面是幾種IGBT短路保護的實用電路及工作原理。
?。?)利用IGBT的Vce設計過流保護電路
圖7 采用IGBT過流時Vce增大的原理進行保護
圖7是利用IGBT過流時Vce增大的原理進行保護的電路,用于專用驅動器EXB841。EXB841內(nèi)部電路能很好地完成降柵及軟關斷,并具有內(nèi)部延遲功能,以消除干擾產(chǎn)生的誤動作。含有IGBT過流信息的Vce不直接送至EXB841的集電極電壓監(jiān)視腳6,而是經(jīng)快速恢復二極管VD1,通過比較器IC1輸出接至EXB841的腳6,其目的是為了消除VD1正向壓降隨電流不同而異,采用閾值比較器,提高電流檢測的準確性。如果發(fā)生過流,驅動器EXB841的低速切斷電路慢速關斷IGBT,以避免集電極電流尖峰脈沖損壞IGBT器件。
?。?) 利用電流傳感器設計過流保護電路
圖8 利用電流傳感器進行過流保護
圖8(a)是利用電流傳感器進行過流檢測的IGBT保護電路,電流傳感器(SC)初級(1匝)串接在IGBT的集電極電路中,次級感應的過流信號經(jīng)整流后送至比較器IC1的同相輸入端,與反相端的基準電壓進行比較,IC1的輸出送至具有正反饋的比較器IC2,其輸出接至PWM控制器UC3525的輸出控制腳10。不過流時,VAVref,VB為高電平,C3充電使VC》Vref,IC2輸出高電平(大于1.4V),關閉PWM控制電路。因無驅動信號,IGBT關閉,而電源停止工作,電流傳感器無電流流過,使VA參數(shù),使PWM驅動信號關閉時間t2》》t1,可保證電源進入睡眠狀態(tài)。正反饋電阻R7保證IC2只有高、低電平兩種狀態(tài),D5,R1,C3充放電電路,保證IC2輸出不致在高、低電平之間頻繁變化,即IGBT不致頻繁開通、關斷而損壞。
?。?) 綜合過流保護電路
圖9是利用IGBT(V1)過流集電極電壓檢測和電流傳感器檢測的綜合保護電路,電路工作原理是:負載短路(或IGBT因其它故障過流)時,V1的Vce增大,V3門極驅動電流經(jīng)R2,R3分壓器使V3導通,IGBT柵極電壓由VD3所限制而降壓,限制IGBT峰值電流幅度,同時經(jīng)R5C3延遲使V2導通,送去軟關斷信號。另一方面,在短路時經(jīng)電流傳感器檢測短路電流,經(jīng)比較器IC1輸出的高電平使V3導通進行降柵壓,V2導通進行軟關斷。
此外,還可以應用檢測IGBT集電極電壓的過流保護原理,采用軟降柵壓、軟關斷及降低工作頻率保護技術的短路保護電路[7、8],這里不作祥細介紹了,有興趣的讀者請參考文獻[1]。開關電源保護功能雖屬電源裝置電氣性能要求的附加功能,但在惡劣環(huán)境及意外事故條件下,保護電路是否完善并按預定設置工作,對電源裝置的安全性和可靠性至關重要。驗收技術指標時,應對保護功能進行驗證。
開關電源的保護方案和電路結構具有多樣性,但對具體電源裝置而言,應選擇合理的保護方案和電路結構,以使得在故障條件下真正有效地實現(xiàn)保護。
圖9 綜合過流保護電路
6 結束語
開關電源保護功能雖屬電源裝置電氣性能要求的附加功能,但在惡劣環(huán)境及意外事故條件下,保護電路是否完善并按預定設置工作,對電源裝置的安全性和可靠性至關重要。驗收技術指標時,應對保護功能進行驗證。
開關電源的保護方案和電路結構具有多樣性,但對具體電源裝置而言,應選擇合理的保護方案和電路結構,以使得在故障條件下真正有效地實現(xiàn)保護。
開關電源保護電路設計完成后,必須先對開關電源進行老化實驗,再驗證各種保護電路的功能。
三、開關電源的穩(wěn)定性設計
引言
眾所周知,任何閉環(huán)系統(tǒng)在增益為單位增益,且內(nèi)部隨頻率變化的相移為360°時,該閉環(huán)控制系統(tǒng)都會存在不穩(wěn)定的可能性。因此幾乎所有的開關電源都有一個閉環(huán)反饋控制系統(tǒng),從而能獲得較好的性能。在負反饋系統(tǒng)中,控制放大器的連接方式有意地引入了180°相移,如果反饋的相位保持在180°以內(nèi),那么控制環(huán)路將總是穩(wěn)定的。當然,在現(xiàn)實中這種情況是不會存在的,由于各種各樣的開關延時和電抗引入了額外的相移,如果不采用適合的環(huán)路補償,這類相移同樣會導致開關電源的不穩(wěn)定。
1 穩(wěn)定性指標
衡量開關電源穩(wěn)定性的指標是相位裕度和增益裕度。相位裕度是指:增益降到0dB時所對應的相位。增益裕度是指:相位為零時所對應的增益大?。▽嶋H是衰減)。在實際設計開關電源時,只在設計反激變換器時才考慮增益裕度,設計其它變換器時,一般不使用增益裕度。
在開關電源設計中,相位裕度有兩個相互獨立作用:一是可以阻尼變換器在負載階躍變化時出現(xiàn)的動態(tài)過程;另一個作用是當元器件參數(shù)發(fā)生變化時,仍然可以保證系統(tǒng)穩(wěn)定。相位裕度只能用來保證“小信號穩(wěn)定”。在負載階躍變化時,電源不可避免要進入“大信號穩(wěn)定”范圍。工程中我們認為在室溫和標準輸入、正常負載條件下,環(huán)路的相位裕度要求大于45°。在各種參數(shù)變化和誤差情況下,這個相位裕度足以確保系統(tǒng)穩(wěn)定。如果負載變化或者輸入電壓范圍變化非常大,考慮在所有負載和輸入電壓下環(huán)路和相位裕度應大于30°。
如圖l所示為開關電源控制方框示意圖,開關電源控制環(huán)路由以下3部分構成。
(1)功率變換器部分,主要包含方波驅動功率開關、主功率變壓器和輸出濾波器;
?。?)脈沖寬度調(diào)節(jié)部分,主要包含PWM脈寬比較器、圖騰柱功率放大;
?。?)采樣、控制比較放大部分,主要包含輸出電壓采樣、比較、放大(如TL431)、誤差放大傳輸(如光電耦合器)和PWM集成電路內(nèi)部集成的電壓比較器(這些放大器的補償設計最大程度的決定著開關電源系統(tǒng)穩(wěn)定性,是設計的重點和難點)。
2 穩(wěn)定性分析
如圖1所示,假如在節(jié)點A處引入干擾波。此方波所包含的能量分配成無限列奇次諧波分量。如果檢測到真實系統(tǒng)對不斷增大的諧波有響應,則可以看出增益和相移也隨著頻率的增加而改變。如果在某一頻率下增益等于l且總的額外相移為180°(此相移加上原先設定的180°相移,總相移量為360°),那么將會有足夠的能量返回到系統(tǒng)的輸入端,且相位與原相位相同,那么干擾將維持下去,系統(tǒng)在此頻率下振蕩。如圖2所示,通常情況下,控制放大器都會采用反饋補償元器件Z2減少更高頻率下的增益,使得開關電源在所有頻率下都保持穩(wěn)定。
波特圖對應于小信號(理論上的小信號是無限小的)擾動時系統(tǒng)的響應;但是如果擾動很大,系統(tǒng)的響應可能不是由反饋的線性部分決定的,而可能是由非線性部分決定的,如運放的壓擺率、增益帶寬或者電路中可能達到的最小、最大占空比等。當這些因素影響系統(tǒng)響應時,原來的系統(tǒng)就會表現(xiàn)為非線性,而且傳遞函數(shù)的方法就不能繼續(xù)使用了。因此,雖然小信號穩(wěn)定是必須滿足的,但還不足以保證電源的穩(wěn)定工作。因此,在設計電源環(huán)路補償時,不但要考慮信號電源系統(tǒng)的響應特性,還要處理好電源系統(tǒng)的大信號響應特性。電源系統(tǒng)對大信號響應特性的優(yōu)劣可以通過負載躍變響應特性和輸入電壓躍變響應特性來判斷,負載躍變響應特性和輸入電壓躍變響應特性存在很強的連帶關系,負載躍變響應特性好,則輸入電壓躍變響應特性一定好。
對開關電源環(huán)路穩(wěn)定性判據(jù)的理論分析是很復雜的,這是因為傳遞函數(shù)隨著負載條件的改變而改變。各種不同線繞功率元器件的有效電感值通常會隨著負載電流而改變。此外,在考慮大信號瞬態(tài)的情況下,控制電路工作方式轉變?yōu)榉蔷€性工作方式,此時僅用線性分析將無法得到完整的狀態(tài)描述。下面詳細介紹通過對負載躍變瞬態(tài)響應波形分析來判斷開關電源環(huán)路穩(wěn)定性。
3 穩(wěn)定性測試
測試條件:
?。?)無感電阻;
?。?)負載變化幅度為10%~100%;
?。?)負載開關頻率可調(diào)(在獲得同樣理想響應波形的條件下,開關頻率越高越好);
?。?)限定負載開關電流變化率為5A/μs或者2A/μs,沒有聲明負載電流大小和變化率的瞬態(tài)響應曲線圖形無任何意義。
圖3(a)為瞬變負載波形。
圖3(b)為阻尼響應,控制環(huán)在瞬變邊緣之后帶有振蕩。說明擁有這種響應電源的增益裕度和相位裕度都很小,且只能在某些特定條件下才能穩(wěn)定。因此,要盡量避免這種類型的響應,補償網(wǎng)絡也應該調(diào)整在稍低的頻率下滑離。
圖3(c)為過阻尼響應,雖然比較穩(wěn)定,但是瞬態(tài)恢復性能并非最好?;x頻率應該增大。
圖3(d)為理想響應波形,接近最優(yōu)情況,在絕大多數(shù)應用中,瞬態(tài)響應穩(wěn)定且性能優(yōu)良,增益裕度和相位裕度充足。
逆變器相關文章:逆變器原理
電容器相關文章:電容器原理
互感器相關文章:互感器原理
濾波器相關文章:濾波器原理
dc相關文章:dc是什么
pwm相關文章:pwm是什么
濾波器相關文章:濾波器原理
逆變器相關文章:逆變器工作原理
比較器相關文章:比較器工作原理
霍爾傳感器相關文章:霍爾傳感器工作原理
電源濾波器相關文章:電源濾波器原理
電流傳感器相關文章:電流傳感器原理 霍爾傳感器相關文章:霍爾傳感器原理 漏電開關相關文章:漏電開關原理 脈寬調(diào)制相關文章:脈寬調(diào)制原理 雙絞線傳輸器相關文章:雙絞線傳輸器原理 熔斷器相關文章:熔斷器原理
評論