<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > USB端口對NiMH電池智能充電的實現(xiàn)方法

          USB端口對NiMH電池智能充電的實現(xiàn)方法

          作者: 時間:2012-05-10 來源:網(wǎng)絡(luò) 收藏

          本文引用地址:http://www.ex-cimer.com/article/177294.htm

          開關(guān)與線性

             2.0規(guī)范允許低功率端口提供最大100mA電流,大功率端口提供最大500mA電流。如果采用線性調(diào)整器件來調(diào)節(jié)電流,這也就是最大可提供的電流。線性調(diào)整器件(圖4)的功耗為P = VQ x IBATT。這會造成調(diào)整管發(fā)熱,可能需要安裝散熱器,以防止過熱。

          圖4. 功耗等于電池充電電流乘以調(diào)整管兩端的電壓。
          圖4. 功耗等于電流乘以調(diào)整管兩端的電壓。

          對應(yīng)5V標(biāo)稱輸入電壓,調(diào)整器件消耗的功率與類型、數(shù)量和電池電壓有關(guān)。

          圖5. 采用5.0V電壓的USB端口對NiMH電池充電時,線性調(diào)整器件的功耗。
          圖5. 采用5.0V電壓的端口對電池充電時,線性調(diào)整器件的功耗。

            標(biāo)稱輸入電壓為5.0V時,線性充電器對電池充電的功耗計算結(jié)果如圖5所 示。對單節(jié)電池充電時,線性充電器的效率僅為30%;對兩節(jié)電池充電時,效率為60%。用500mA電流對單節(jié)電池充電時,功耗會高達2W。這樣的功耗通 常需要加散熱器。功耗為2W時,熱阻為+20°C/W的散熱器在+25°C環(huán)境溫度下會被加熱至大約+65°C,要得到滿額性 能,還需要有流動空氣來協(xié)助其散熱。處于空氣靜止的封閉空間內(nèi),溫度會更高。

            采用基于開關(guān)調(diào)節(jié)器的充電器可解決多個問題。首先,與線性充電器相比,能夠以更快的速率、更大的電流對電池進行充電(圖6)。由于功耗較低、發(fā)熱較少,熱管理方面的問題也減少了。同時,由于運行溫度降低,充電器更加可靠。

          圖6. 對單節(jié)NiMH電池充電時,線性充電器和開關(guān)充電器的充電時間不同。
          圖6. 對單節(jié)電池充電時,線性充電器和開關(guān)充電器的充電時間不同。

            圖6中的計算結(jié)果基于以下條件和假設(shè)得到:采用高功率USB口最大允許電流(500mA)的大約90%充電;開關(guān)調(diào)節(jié)器采用非同步整流的buck轉(zhuǎn)換器,具有77%效率。

          電路實例

            圖7所示電路是用于單節(jié)NiMH電池充電的開關(guān)模式降壓型調(diào)節(jié)器。它采用DS2712充電控制器調(diào)節(jié)充電電流和終止充電。充電控制器監(jiān)視溫度、電池電壓和電池電流。如果溫度超過+45°C或者低于0°C,控制器不會對電池充電。

          Figure 7. Schematic shows a single-cell NiMH charging from a USB port.
          圖7. USB端口對單節(jié)NiMH電池快速充電的原理圖。

            如圖7所示,Q1是降壓型充電器的開關(guān)功率晶體管;L1是濾波電感;D1是續(xù)流或整流二極管。輸入電容C1為 10µF、超低ESR的陶瓷濾波電容。用鉭電容或者其它電解電容替代C1會使充電器的性能降低。R7是電流調(diào)節(jié)器檢測放大器的檢流電阻。 DS2712的基準(zhǔn)電壓為0.125V,并具有24mV滯回。通過CSOUT提供閉環(huán)、開關(guān)模式電流控制。充電控制引腳CC1將Q2的柵極拉低時,使能 Q1的柵極驅(qū)動。Q1和Q2均為低Vt (柵-源門限電壓)的pMOSFET。CC1和CSOUT均為低電平時,Q2的漏-源電壓將稍大于Vt。該電壓以及CSOUT的正向壓降構(gòu)成了Q1的柵極 開關(guān)電壓。

            CC1為低電平時,啟動電流閉環(huán)控制。圖8所示為啟動開關(guān)時的波形。上方波形是0.125ohm; (檢流電阻兩端的電壓,下方波形是Q1漏極至GND的電壓。開始時,當(dāng)Q1打開(CC1和CSOUT均為低電平)時,電感電流向上爬升。當(dāng)電流增大到使檢 流電阻兩端的電壓達到0.125V時,CSOUT變?yōu)楦唠娖?,開關(guān)關(guān)斷。此后,電感電流開始下降,直到檢流電阻兩端的電壓達到約0.1V,CSOUT又變 為低電平。只要CC1為低電平,該過程將一直持續(xù)。


          上一頁 1 2 下一頁

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();