分布式MPPT提高太陽能光伏系統(tǒng)效率的方案設(shè)計
本文介紹了太陽能光伏系統(tǒng)由于部分電池板受到遮蔽而產(chǎn)生的發(fā)電量下降的問題,和在電池板級采用分布式最大功率點跟蹤系統(tǒng)(MPPT)的優(yōu)點,還就采用 SolarMagic 技術(shù)的各種案例研究結(jié)果進行了探討。
本文引用地址:http://www.ex-cimer.com/article/177836.htm太陽能是市場上最有前景的可再生能源之一。由于政府推出激勵政策和傳統(tǒng)電力成本不斷攀升的影響,越來越多的家庭開始轉(zhuǎn)向太陽能,并在屋頂安裝光伏(PV)系統(tǒng)。按照目前的光伏系統(tǒng)價格計算,用戶通常在 7-8 年后才能獲得投資回報。政府激勵政策和光伏系統(tǒng)的使用壽命必須能持續(xù) 20 年或更久。太陽能光伏系統(tǒng)的投資回報取決于該系統(tǒng)每年的發(fā)電量,因此用戶需要的光伏系統(tǒng)必須具備高效、可靠和易于維護等特性,從而可以獲得最大限度的發(fā)電量。
如今,很多安裝太陽能光伏系統(tǒng)的用戶已經(jīng)意識到部分或間歇性的遮蔽會影響到系統(tǒng)的發(fā)電量。
部分陰影遮蔽對太陽能光伏系統(tǒng)的影響:
當樹木、煙囪或其他物體投射的陰影遮擋住光伏系統(tǒng)時,就會導(dǎo)致系統(tǒng)造成“失配”問題。即使光伏系統(tǒng)只受到一點點陰影的遮擋都會導(dǎo)致發(fā)電量的大幅下跌。部分遮蔽導(dǎo)致的系統(tǒng)失配對發(fā)電量的實際影響很難通過簡單的計算公式獲得。因為影響系統(tǒng)發(fā)電量的因素很多,包括內(nèi)部電池模塊間互連、模塊定向、光伏電池組間的串并聯(lián)問題以及逆變器的配置等。光伏模塊通過多個電池串相互連接而成,每個電池串被稱為一個“組列”。每個組列由一個旁路二極管來保護,以免一個或多個電池被遮蔽或損壞時導(dǎo)致整個電池串因為過熱而受到損壞。這些串聯(lián)或并聯(lián)的電池組列能夠使電池板產(chǎn)生相對較高的電壓或電流。
光伏陣列由串聯(lián)在一起的光伏模塊通過并聯(lián)構(gòu)成。每串光伏模塊的的最大電壓必須低于逆變器的最大輸入電壓額定值。
當光伏系統(tǒng)部分被遮蔽時,未被遮蔽的電池中的電流流經(jīng)被遮蔽部分的旁路二極管。
當光伏陣列受到遮蔽而出現(xiàn)上述情況時,會產(chǎn)生一條具有多個峰值的 V-P 電氣曲線。圖 1 顯示了具有集中式最大功率點跟蹤系統(tǒng)( MPPT) 功能的標準并網(wǎng)配置,其中一個組列的兩個電池板被遮蔽。集中式 MPPT無法設(shè)置直流電壓,因此無法令兩個組列的輸出功率都達到最大。在高直流電壓點 (M1),MPPT 使未遮蔽組列的輸出功率達到最大。在低直流電壓點 (M2),MPPT 將使遮蔽組列的輸出功率達到最大:旁路二極管繞過遮蔽電池板,此組列的未遮蔽電池板將提供全量電流。陣列的多個 MPP 可能導(dǎo)致集中最大功率點跟蹤(MPPT)配置的額外損失,因為最大功率點跟蹤器可能得到錯誤信息停止在局部最大點處,并穩(wěn)定在具有V-P特征的次優(yōu)點。
圖 1:具有集中 MPPT 功能的標準并網(wǎng)配置,其中一個組列的兩個電池板被遮蔽。
不同的案例研究和現(xiàn)場測試證明,部分遮蔽對光伏系統(tǒng)的發(fā)電量具有嚴重的影響。通過使用分布式 MPPT 控制可以減輕遮蔽對系統(tǒng)的不利影響。
利用分布式MPPT最大限度降低系統(tǒng)失配問題:
為了使陣列中每一個太陽能光伏電池板的電力輸出都達到最大值,美國國家半導(dǎo)體開發(fā)了 SolarMagic™ 技術(shù)。通過該技術(shù),即使陣列中其他電池板出現(xiàn)失配問題時,每塊電池板仍然能輸出最大的電力。SolarMagic 技術(shù)運用高級算法和先進的混合信號技術(shù)能夠監(jiān)控并優(yōu)化每塊太陽能光伏電池板的產(chǎn)能,因而能夠補償高達50%的因失配問題而產(chǎn)生的發(fā)電量損失。SolarMagic 電源優(yōu)化器可快速、輕松地安裝在傳統(tǒng)太陽能光伏系統(tǒng)中。
圖 2 顯示了采用 SolarMagic™ 技術(shù)的典型光伏系統(tǒng):
該系統(tǒng)擁有由n個模塊并聯(lián)形成的兩個組列,為便于演示,圖中每個組列僅顯示3個光伏模塊,但組列通常由 5 到 12 個模塊并聯(lián)構(gòu)成以獲得 500-800V 的組列電壓。
組列 A 的所有模塊沒有照射失調(diào)問題,每個模塊都具有相同的特征,且照射均勻。
組列 B 的所有模塊由于遮蔽、定向傾斜或聚集了更多的灰塵而具有不同的特征或照射失調(diào)。每個模塊的輸出在 SolarMagic™優(yōu)化器(SMO)模塊的輸入點相連。每個 SMO 的輸出采用與組列 A模塊相同的串聯(lián)方式。
圖 2:采用 SolarMagic 功率優(yōu)化器的光伏系統(tǒng)的簡化光伏接線圖。
SolarMagic™ 優(yōu)化器模塊具有高效集成的電源電路,采用最大限度提高各光伏模塊輸出功率的最大功率點算法。因此,整個組列具有相同的輸出電流,極大減少了熱斑問題和采用內(nèi)部旁路模式。每個 SMO 模塊將調(diào)節(jié)其輸出電壓以符合整體的總線電壓。
結(jié)果是整個光伏系統(tǒng)將呈現(xiàn)具有單一最大功率點的 I-V 曲線,簡化中央逆變器的操作,并盡可能降低失配帶來的發(fā)電量損失。
下表匯總了太陽能光伏系統(tǒng)受到部分遮蔽后的現(xiàn)場測試結(jié)果,最后一列顯示了 SolarMagic™技術(shù)對損失能量的補充百分比。
時間 | 遮蔽陣列(%) | 遮蔽導(dǎo)致的功率損失 | Solar Magic 對損失能量的補充(%) |
上午 9:30 | 13% | 44% | 50% |
上午 10:30 | 11% | 47% | 58% |
上午 11:30 | 9% | 54% | 66% |
中午 12:30 | 6,5% | 44% | 65% |
下午 2:30 | 3% | 25% | 40% |
評論