<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > IGBT及其子器件的四種失效模式比較

          IGBT及其子器件的四種失效模式比較

          作者: 時間:2011-12-11 來源:網(wǎng)絡(luò) 收藏

          本文引用地址:http://www.ex-cimer.com/article/178261.htm

          1、 引言
          派生,例如:IGCT,是MOS和雙極集成的混合型半導體功率。因此,,既有其子MOS和雙極的特有,還有混合型特有的。MOS是靜電極敏感器件,因此,也是靜電極敏感型器件,其子器件還應(yīng)包括靜電放電(SED)防護器件。據(jù)報道,失效的半導體器件中,由靜電放電及相關(guān)原因引起的失效,占很大的比例。例如:汽車行業(yè)由于失效而要求退貨的器件中,其中由靜電放電引起的失效就占約30%。
          本文通過案例和實驗,概述IGBT子器件的四種失效模式:
          (1) MOS柵擊穿;
          (2) IGBT——MOS閾值電壓漂移;
          (3) IGBT壽命期內(nèi)有限次連續(xù)短路脈沖沖擊的累積損傷;
          (4) 靜電放電保護用高壓npn管的硅熔融。
          2、 MOS柵擊穿
          IGBT器件的剖面和等效電路見圖1。

          由圖1可見,IGBT是由一個MOS和一個npnp四層結(jié)構(gòu)集成的器件。而MOS是金屬—氧化物—半導體場效應(yīng)管的簡稱。其中,氧化物通常是硅襯底上氧化而生成的SIO2,有時還迭加其他的氧化物層,例如Si3N4,Al2O3。通常設(shè)計這層SiO2的厚度ts:
          微電子系統(tǒng):ts1000A電力電子系統(tǒng):ts≥1000A。
          SiO2,介質(zhì)的擊穿電壓是1×1019V/m。那么,MOS柵極的擊穿電壓是100V左右。
          人體產(chǎn)生的靜電強度U:
          濕度:10-20%,U>18000V;60-90%時,U≥1500V。
          上述數(shù)據(jù)表明,不附加靜電保護的MOS管和MOS集成電路(IC),只要帶靜電的人體接觸它,MOS的絕緣柵就一定被擊穿。
          案例:上世紀六十年代后期,某研究所研制的MOS管和MOS集成電路。不管是安裝在印刷電路板上還是存放在盒中的此種器件,都出現(xiàn)莫名其妙的失效。因此,給MOS一個綽號:摸死管。
          如果這種“摸死”問題不解決,我國第一臺具有自主知識產(chǎn)權(quán)的MOS集成電路微型計算機就不可能在1969年誕生。經(jīng)過一段時間的困惑,開始懷疑靜電放電的作用。為了驗證,準備了10支柵極無任何防護的MOS管,用晶體管特性測試儀重新測試合格后,即時將該器件再往自己身上摩擦一下再測特性,結(jié)果發(fā)現(xiàn):100%柵擊穿!隨后,在MOS管的柵極一源極之間反并聯(lián)一個二極管,問題就基本解決。意外的結(jié)果:“摸死管”成了一句引以為戒的警語。該研究所內(nèi)接觸和應(yīng)用MOS管MOS-IC的同事,對靜電放電對器件的破壞性影響都有了深刻的體驗。
          3、 IGBT——MOS閾值電壓漂移——一種可能隱藏的失效模式
          MOS管的閾值電壓Vth的方程式:
          (1)
          式中VSS=表面態(tài)閾值電壓,Vhh =本征閾值電壓,
          常數(shù)
          (費米勢),N=硅襯底雜質(zhì)濃度。
          圖2是柵電壓VG和柵電容CO的C—V曲線,曲線上的箭頭表時掃描方向。

          由圖2可見。C—V曲線是一條遲滯回路,該回路包絡(luò)的面積等于表面態(tài)電荷,QSS是由Si—SiO2界面缺陷和正電荷離子引起的。而且,Si—SiO2界面的QSS始終是正的。即VSS總是向VITH正向移動。這就決定了溝增強型MOS管和P溝數(shù)字集成電路容易實現(xiàn)。

          為了減小QSS和防止SiO2——Si界面電荷交換與移動,引起閾值電壓漂移,采取了許多措施:
          (1) 將111>硅襯底換為100>硅襯底,減小硅表面的非飽和鍵;
          (2) 制備工藝中使用的石英器皿,氣體和化學試劑均提升純度級別,盡量減小Na離子的污染含量;
          (3) 研發(fā)新的絕緣柵介質(zhì)系列:
          ·Si3N4——Si,Si3N4——SiO2——Si;
          ·Al2O3——Si,Al2O3——SiO2——Si。
          以上措施,對低壓微功耗的微電子的應(yīng)用,已證明MOS與MOSIC是可靠的。但是對于電力電子應(yīng)用的場合:高電壓,大電流和工作溫度范圍較寬。特別是,靜電放電電壓接近柵極擊穿電壓而又未穿柵極時,例如上文所示接近100V時,仍有隱憂:
          (1) 較高柵電壓下,閾值電壓漂移較大,圖3示出P溝硅柵MOS在高柵電壓下的。由圖3可見,柵電壓VG=40V時,=4V。

          (2) PT—IGBT在高溫柵偏壓下閾值電壓漂移。圖4給出PT—IGBT(IRG4BC20F)在(1)柵已射極Gge=20V,Vce=OV(HTGB)和(2)Vge=0V,Vce=0.8V(HTRB)在140℃,經(jīng)過1200小時的應(yīng)力試驗結(jié)果。由圖4中的HTGB曲線可見,柵偏置試驗開始后100小時內(nèi),時線性增加,隨后趨于穩(wěn)定。


          (3) 電可擦只讀存貯器(electrically erasable read-only memory,簡稱EEROM)的存貯單元是氮化硅(Si3N4)—二氧化硅(SiO2)構(gòu)成的雙層絕緣柵的MOS管,它利用柵極注入電荷來改變ROM存貯單元的狀態(tài)。
          (4) MOS是一種單極,多數(shù)載流子器件,按半導體器件理論,它的抗輻射,主要是抗γ射線的能力應(yīng)該比雙極、少數(shù)載流子器件強,但是,實際情況剛相反。這說明MOS的絕緣柵結(jié)構(gòu)在輻射場下有較大的損傷和電荷交換。
          (5) 以上4種情況說明,MOS閾值電壓漂移在電力電子的應(yīng)用條件,即高電壓(接近柵擊穿電壓)、大電流和高溫(接近pn結(jié)臨界溫度150℃)時,是一種導致器件和電路失效的潛在參數(shù),似乎仍需系統(tǒng)考察和修訂老化條件。所以,將稱作是一種可能隱藏的失效模式。
          4、 IGBT壽命期限內(nèi),有限次數(shù)短路脈沖沖擊的累積損傷失效
          在壽命期限內(nèi),IGBT會遇到在短路、雪崩等惡劣條件下工作,它能承受短路脈沖沖擊的次數(shù)是有限的,并和相關(guān)條件有關(guān)。
          4.1非穿通型(NPT)IGBT的魯棒性
          NPT—IGBT的魯棒性見圖5,被測器件是SGW15N120。在540V 125℃時測試。X軸是耗散的能量。Y軸是器件直至損壞的短路周期次數(shù)。

          由圖5可見,在給定條件下,器件有一個臨界能量:
          EC=V·I·TSC=1.95J(焦耳)
          式中,TSC是短路持續(xù)時間
          當E>EC時,,第一次短路就使器件失效。
          當EEC時,大約要經(jīng)歷104次短路以上,器件會因周期性的能量累積退化使它失效。
          當E=EC時,器件失效模式不明確。當能量等于或稍等于EC時,器件關(guān)斷后,器件的拖尾電流,經(jīng)過一段延遲時間td f ,將導致熱擊穿。這段延緩性失效時間為微秒級。
          圖6給出不同短路續(xù)時間TSC,IGBT測量的短路電流波形。


          電荷放大器相關(guān)文章:電荷放大器原理

          上一頁 1 2 下一頁

          關(guān)鍵詞: 模式 比較 失效 器件 及其 IGBT

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();