<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 通信應(yīng)用中差分電路設(shè)計(jì)的相關(guān)技術(shù)

          通信應(yīng)用中差分電路設(shè)計(jì)的相關(guān)技術(shù)

          作者: 時(shí)間:2011-01-19 來源:網(wǎng)絡(luò) 收藏




          圖3 有用的信號(hào)和噪聲

          圖4是一個(gè)單端輸入單端運(yùn)放的例子,可以看到中頻放大器、抗混疊濾波器、變壓器和ADC四個(gè)級(jí)各自的信號(hào)增益,輸入輸出3階截點(diǎn)功率,和引入噪聲的系數(shù)等指標(biāo)。單端信號(hào)利用無源變壓器在ADC前轉(zhuǎn)換為差分信號(hào)。這里要注意一下,假設(shè)ADC的終端匹配阻抗為200Ω,而由于前面各級(jí)都是50Ω的特征阻抗,所以將變壓器的阻抗比設(shè)為1:4。

          如果把變壓器提前,將信號(hào)在運(yùn)放前就轉(zhuǎn)換為差分信號(hào),則單端運(yùn)放換成差分運(yùn)放,這樣即構(gòu)成全差分結(jié)構(gòu)。如圖5所示。

          這里要講到級(jí)聯(lián)系統(tǒng)總體噪聲系數(shù)和輸入輸出三階截點(diǎn)的等效計(jì)算。當(dāng)考慮總體的噪聲系數(shù)時(shí),第一級(jí)的影響最大;而考慮截點(diǎn)指標(biāo)時(shí),最后一級(jí)的影響最明顯。

          再考慮一下無雜散動(dòng)態(tài)范圍與系統(tǒng)三階截點(diǎn)的關(guān)系,我們知道隨著輸入信號(hào)能量增加,三階交調(diào)失真和噪聲底剛好相等時(shí),系統(tǒng)達(dá)到最大的SFDR,此時(shí)可以用這個(gè)式子來表示:SFDR = (2/3)(IIP3-NF-10log( TERMAL NOISE)。

          于是我們可以算出剛才提到的兩種單端轉(zhuǎn)差分方式,總體產(chǎn)生的信號(hào)增益、三階截點(diǎn)、噪聲系數(shù)和無雜散動(dòng)態(tài)范圍。從指標(biāo)上看相差不多,差分有源驅(qū)動(dòng)的結(jié)構(gòu)總體失真和噪聲系數(shù)略高,但是SFDR性能也高一些。另外要注意,在單端無源轉(zhuǎn)換結(jié)構(gòu)中,如果去掉中頻放大器,滿幅的參考輸入功率為6dBm,且抗混疊濾波器的設(shè)計(jì)是非對稱的結(jié)構(gòu)。而且整個(gè)設(shè)計(jì)要加入更多阻性匹配器件,這就要求前級(jí)驅(qū)動(dòng)的能力要強(qiáng),也就是說電流和功耗要大。另外,單端運(yùn)放的偶次諧波,共模抑制,電源抑制問題也都會(huì)一定程度上影響整體系統(tǒng)的性能。

          另一方面,在傳送數(shù)據(jù)時(shí),可以一位一位地傳,也可以將其分割成符號(hào)進(jìn)行傳送,比如每個(gè)符號(hào)兩比特,然后將其分別對應(yīng)到4種相位上,之后再作用到載波上進(jìn)行傳送。這是一種很常見的調(diào)制模式,即QPSK。

          通常情況,我們可以用星座圖來描述不同的調(diào)制方式,我們知道高階的調(diào)制可用于更高數(shù)據(jù)速率的中,但同時(shí)需要更低的本振泄漏、更好功放線性度、更高的系統(tǒng)帶寬和解調(diào)器信噪比。一方面呢,ADI也在開發(fā)更高性能的產(chǎn)品以滿足客戶的需要,另一方面我們也要在系統(tǒng)設(shè)計(jì)時(shí)注意發(fā)掘問題的原理,并采用適當(dāng)?shù)姆椒ê图记杉右越鉀Q。

          圖6中我們可以看出接收系統(tǒng)中的噪聲和諧波對誤差向量幅度EVM的影響。也就是說,解調(diào)出來的信號(hào)相對理想的星座圖位置會(huì)有所偏移,一般我們用誤差向量幅度來衡量,過大的誤差向量幅度會(huì)導(dǎo)致符號(hào)錯(cuò)誤并惡化位出錯(cuò)率。特別在高階調(diào)制方式時(shí),符號(hào)之間的位置更近,對誤差向量幅度的要求更嚴(yán)格。


          圖4 單端輸入單端輸出的例子


          圖5 全差分結(jié)構(gòu)的例子


          圖6 接收系統(tǒng)中的噪聲和諧波對誤差向量幅度EVM的影響

          由此我們可以得出,更高階的調(diào)制有著更高的數(shù)據(jù)速率,同時(shí)也要有更好的EVM,而更好的EVM意味著較高的無雜散動(dòng)態(tài)范圍SFDR,而SFDR又與信噪比、交調(diào)失真和各次諧波項(xiàng)相關(guān)。所以要提高以上這些性能指標(biāo),采用平衡信號(hào)、差分結(jié)構(gòu)即可得到顯著改善。

          總結(jié)

          最后,對于好的射頻系統(tǒng)來講,主要關(guān)注的是如何提高對有用信號(hào)的敏感度,從而更好地將信號(hào)從噪聲、諧波和各種干擾中分離出來。而差分應(yīng)用的好處就在于更好的共模抑制、電源抑制、抗電磁干擾能力、更好的線性度以及同等條件下相對單端信號(hào)更大的動(dòng)態(tài)范圍。無疑,差分結(jié)構(gòu)優(yōu)勢明顯,更多也更適合用于高性能的射頻系統(tǒng)。

          本文引用地址:http://www.ex-cimer.com/article/179953.htm

          上一頁 1 2 下一頁

          關(guān)鍵詞: 收發(fā)器

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();