如何簡化步進電機系統(tǒng)設計
在開始任何運動之前,通過SIP接口使用SetParam命令設置運轉參數(shù):最低轉速、最高轉速、加速度、減速度以及其它運動參數(shù)值。為確保運動的完整性,在電機運動過程中,運動曲線的很多參數(shù)值是鎖定的,只能在電機被制動后才能更改這些參數(shù)。本文引用地址:http://www.ex-cimer.com/article/180009.htm
圖2所示是Move命令的一個典型運動曲線。當接收到一條 Move命令時,控制器將計算電機從靜止開始做加速運轉再返回到起始位置所需的步數(shù)N的運動曲線,整個過程都是由數(shù)字內(nèi)核硬件獨立完成的。
GoTo命令指示驅動器根據(jù)內(nèi)部22位絕對位置計數(shù)器的數(shù)值驅動電機旋轉到一個特定位置。 GoTo命令分為兩種:一種沿特定方向旋轉;另一種是沿最直接路徑旋轉,即確定以最少步數(shù)達到所需位置的運動方向。對于每步旋轉1.8度的1/128微步電動機,22位計數(shù)器的解析率相當于電機旋轉大約164周。即便齒輪減速比很大,有效解析率仍然在位置計數(shù)器的范圍內(nèi)。GoTo命令的運動曲線看起來與Move命令曲線相同,但是有一點不同,在GoTo命令中,達到命令指定的絕對位置所需步數(shù)是自動計算結果。
Run和GoUntil命令用于使電動機保持恒速旋轉,直到接到一條制動命令 (適用于Run命令)或者有外部事件發(fā)生(適用于GoUntil)為止。當接收到一條制動命令時,控制器執(zhí)行下面兩種操作之一:緊急制動或減速制動。該器件還能執(zhí)行緊急制動或減速停止,然后提供三態(tài)輸出。
圖2:典型運動曲線。
如圖3所示,使用一系列Run命令可以執(zhí)行復雜的運動。每接到一個新的Run命令后,控制器都會驅動電機做加速或減速旋轉到新命令指定的位置,并以指定速度保持旋轉,直到接收到下一條Run命令或一條Stop命令為止。當接收到一條反向運轉命令時,電機減到最低速度,然后再向相反方向加速運轉。
圖3:多條Run命令可實現(xiàn)復雜運動。
電壓控制式微步進
通常情況下,步進電機驅動電路是電流式控制設計,電流控制器監(jiān)測并控制繞組電流強度。這種結構讓設計人員能夠在寬轉速范圍內(nèi)保持所需的轉矩,而且電源電壓波動很小。這種設計非常適合全步和半步驅動器,而且也易于實現(xiàn)。很多設計人員避免在微步進驅動器中使用電壓控制方式,因為電源電壓變化導致峰流有很大變化,而且,隨著轉速提高,電機的反電動勢(EMF )也會增強。不過,利用數(shù)字控制技術可以修正這些不利因素。
為實現(xiàn)這種電壓控制式驅動電路,需要利用一個PWM計數(shù)器/定時器電路來控制輸出脈寬,以數(shù)字方式設置輸出占空比。L6470通過在電機繞組上施加電壓來控制相電流。雖然不能直接控制相電流的幅度,但是,相電流與相電壓的大小、負載、轉矩、電機電學特性和轉速密切相關。有效輸出電壓與電機電源電壓和KVAL系數(shù)的積成正比。KVAL的取值范圍是電源電壓的0%到100%。在微步進驅動器中,這個最大值再乘以調制指數(shù),可產(chǎn)生所選步數(shù)的正弦波。峰值電壓由下面的公式得出:
KVAL值由下面的公式得出: KVAL= (Ipk x R)/Vs
其中:Ipk=所需的峰流,Vs=典型電源電壓,R=電機繞組電阻
該器件的寄存器支持加速度、減速度、恒速運轉和保持位置等不同的 KVAL設置,在運動曲線每個部分輕松實現(xiàn)不同的轉矩設置。
評論