<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 現(xiàn)代DAC和DAC緩沖器有助于提升系統(tǒng)性能、簡化設(shè)計(jì)

          現(xiàn)代DAC和DAC緩沖器有助于提升系統(tǒng)性能、簡化設(shè)計(jì)

          作者: 時間:2012-05-02 來源:網(wǎng)絡(luò) 收藏

          圖15. AD8129/AD8130差動放大器

          圖16. 采用AD8129/AD8130的

          方程1和方程2所示為放大器的輸出電壓與的互補(bǔ)輸出電流之間的關(guān)系.端接電阻RT,執(zhí)行電流-電壓轉(zhuǎn)換;RF RG 之比決定了增益. VREF 在方程2中被設(shè)為0.


          (1)


          (2)

          在圖16中,該電路采用一個四通道高速、低功耗、14位,其中,互補(bǔ)電流輸出級將提高速度,降低低功耗DAC的失真.

          圖17展示的是電路的無雜散動態(tài)范圍(SFDR),它是頻率的函數(shù),采用DAC和AD8129,其中,RF = 2k, RG = 221, RT = 100, 且VO = 8Vp-p, 兩個電源電壓對應(yīng)的不同值.此處選擇了AD8129,因?yàn)樗峁┹^大的輸出信號,在G = 10時保持穩(wěn)定,與AD8130相比,具有較高的增益帶寬積.兩種情況下,SFDR一般都要好于55dB,超過10MHz,在低電源電壓下,約有>3dB的改善.

          圖17. DAC和AD8129的失真 VO = 8 V p-p

          單位增益下的運(yùn)算放大器: 第二個電路(圖18)采用了一個高速放大器與兩個 RT電阻.該放大器只是通過, RT將互補(bǔ)電流I1和 I2, 轉(zhuǎn)換成單端輸出電壓, VO這個簡單的電路不允許以放大器為增益模塊放大信號.

          圖18. 采用運(yùn)算放大器的簡單差分到單端轉(zhuǎn)換器

          方程3所示為VO 與DAC輸出電流之間的關(guān)系.失真數(shù)據(jù)通過與RT并聯(lián)的5pF電容進(jìn)行測量


          (3)

          為了展示這個電路的性能,DAC與ADA4857 和 ADA4817 運(yùn)算放大器配對,其中T = 125 (and CT = CF = 5 pF與RT 并聯(lián),以實(shí)現(xiàn)穩(wěn)定性和低通濾波).單通道ADA4857-1和雙通道ADA4857-2為單位增益穩(wěn)定型、高速、電壓反饋放大器,具有低失真、低噪聲和高壓擺率等特點(diǎn).作為眾多應(yīng)用(包括超聲、ATE、有源濾波器、ADC驅(qū)動器等)的理想解決方案,其帶寬為850 MHz,壓擺率為2800 V/μs,0.1%建立時間為10ns——全部都是在5mA的靜態(tài)工作電流下實(shí)現(xiàn).ADA4857-1和ADA4857-2具有寬工作電壓范圍(5V至10V),特別適合需要寬動態(tài)范圍、精密、高速度和低功耗的系統(tǒng)

          ADA4817-1(單通道)和ADA4817-2(雙通道)FastFET 放大器是具有FET輸入的單位增益穩(wěn)定、超高速電壓反饋型運(yùn)算放大器.它們采用ADI公司的專有超快速互補(bǔ)雙極性(XFCB)工藝制造,具有超低的噪聲(4nV/√Hz和2.5fA/√Hz)和極高的輸入阻抗.其輸入電容為1.3pF,最大失調(diào)電壓為2mV,功耗低(19mA),−3dB帶寬較寬(1050MHz),非常適合數(shù)據(jù)采集前端、光電二極管前置放大器以及其他寬帶跨阻應(yīng)用.它們具有5V至10V的寬電源電壓范圍,可采用單電源或雙電源供電,適合包括有源濾波、ADC驅(qū)動和DAC緩沖在內(nèi)的各種應(yīng)用.

          圖19比較了該電路在VO = 500mV p-p 時相對于一個采用變壓器的電路的失真和頻率之間的關(guān)系.變壓器的失真低于放大器,后者的增益在高頻下不斷下降,但采用變壓器的失真卻在低頻下不斷變差.在此,可在有限范圍內(nèi)實(shí)現(xiàn)接近90dB的SFDR,在高達(dá)10MHz時優(yōu)于70dB.

          圖19. DAC、ADA4857和ADA4817的失真 VO = 500 mV p-p, RL = 1 k

          具有增益運(yùn)算放大器: 第三個電路(圖20)也使用了相同的高速運(yùn)算放大器,但所含電阻網(wǎng)絡(luò)拉遠(yuǎn)了放大器與DAC之間的距離,支持增益設(shè)置,并可以利用VREF1和 VREF2兩個基準(zhǔn)電壓之一調(diào)整輸出偏置電壓.

          圖20. 支持增益和偏置功能的差分到單端轉(zhuǎn)換

          方程4定義了DAC輸出電流與放大器輸出電壓在 VREF1 = VREF1 = 0. 時的關(guān)系.為了匹配DAC之外的放大器網(wǎng)絡(luò)的輸入阻抗RT1RT2, 兩個端接電阻必須單獨(dú)設(shè)置,同時要考慮放大器的特性.


          (4)

          圖21比較了放大器在這種配置下的失真以及變壓器電路的失真. RT1 = 143, RT2 = 200 ,RF = RG = 499, CF = 5pF出于穩(wěn)定性和高頻濾波考慮——且 RL = 1k. 在此ADA4817的性能可與變壓器在高頻下的性能相媲美,在最高70MHz時,其SFDR可維持在優(yōu)于-70dBc的水平.與變壓器相比,兩個運(yùn)算放大器都能維持出色的低頻保真.

          圖21. DAC、ADA4817和ADA4857的失真 VO = 500 mV p-p

          本文討論了將低失真、低噪聲、高速放大器用作DAC的一些優(yōu)勢,并將其性能與變壓器進(jìn)行了比較.同時比較了采用兩種不同架構(gòu)的三類應(yīng)用電路,并以實(shí)例展示了DAC和AD8129、ADA4857-1/ADA4857-2以及ADA4817-1/ADA4817-2放大器的測量數(shù)據(jù).數(shù)據(jù)顯示,放大器在頻率低于1MHz時的性能優(yōu)于變壓器,在頻率不超過80 MHz時,非常接近變壓器.在權(quán)衡考慮功耗和失真時,放大器的選擇非常重要.


          上一頁 1 2 3 下一頁

          關(guān)鍵詞: DAC 緩沖器 系統(tǒng)性能

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();