10bit 60MsPs 15mW流水線ADC的設(shè)計(jì)
本設(shè)計(jì)采用4級(jí)2.5 bit加一個(gè)2 bit Flash的ADC結(jié)構(gòu)。由于運(yùn)放共享技術(shù)的引入,運(yùn)放的數(shù)量從原來(lái)的4個(gè)減少到了2個(gè),因而大大減小了功耗,優(yōu)化了設(shè)計(jì)。其運(yùn)放共享技術(shù)原理圖如圖3所示,與傳統(tǒng)流水線ADC相比,它只是添加了開(kāi)關(guān)ISO1租ISO2來(lái)對(duì)運(yùn)放的輸入進(jìn)行切換。但開(kāi)關(guān)ISO1和ISO2的引入又會(huì)引發(fā)其他問(wèn)題,如ISO1和ISO2的開(kāi)關(guān)電阻會(huì)加大信號(hào)通路的阻值,同時(shí),這些電阻和寄生電容的結(jié)合會(huì)產(chǎn)生一個(gè)零點(diǎn),而這會(huì)引起閉環(huán)電路的過(guò)沖和震蕩。所以,必須對(duì)這些開(kāi)關(guān)進(jìn)行優(yōu)化,以減小過(guò)沖并避免震蕩。增加開(kāi)關(guān)的尺寸可以減小開(kāi)關(guān)的阻值,但是又會(huì)增加寄生電容,減小反饋系數(shù),降低閉環(huán)的帶寬,導(dǎo)致閉環(huán)速度降低。本文引用地址:http://www.ex-cimer.com/article/188469.htm
3 運(yùn)放的具體設(shè)計(jì)
在選取運(yùn)放結(jié)構(gòu)時(shí),需要對(duì)運(yùn)放增益、帶寬、輸出擺幅、速度、功耗和穩(wěn)定性等方面進(jìn)行綜合考慮和折中。隨著工藝尺寸的不斷縮小和供電電壓的不斷降低,兩級(jí)運(yùn)放比單級(jí)運(yùn)放具有更高的增益和輸出范圍。但是,在速度、功耗、共模反饋,特別是穩(wěn)定性方面,兩級(jí)運(yùn)放也有著明顯的缺陷。本設(shè)計(jì)中的信號(hào)輸入范圍為500mVpp,這樣,折疊式運(yùn)放(folded-cascode op-amp)已經(jīng)足以滿足擺幅的要求。但為了達(dá)到低功耗,高速度,高直流增益以及非常良好的穩(wěn)定性,本設(shè)計(jì)在第一、二級(jí)所用的運(yùn)放采用折疊式增益增強(qiáng)結(jié)構(gòu)(gain boosting)。其電路結(jié)構(gòu)原理圖如圖4所示。
為了避免出現(xiàn)慢建立(slow settling)和不穩(wěn)定,輔助運(yùn)放的單位增益帶寬ωadd必須滿足:
βωμωaddωp2 (3)
式中,ωμ表示主運(yùn)放的單位增益帶寬,ωp2表示主運(yùn)放的次極點(diǎn)。
4 仿真結(jié)果
筆者在SMIC 0.13μm CMOS工藝下,對(duì)整個(gè)ADC進(jìn)行了瞬態(tài)仿真。在60MHz采樣頻率下,其輸入幅度為475mV的正弦信號(hào)。那么,在輸入頻率為9MHz時(shí)。即可得到圖5所示的FFT頻譜圖。圖中,信號(hào)的有效比特?cái)?shù)(ENOB)為9.67bit,無(wú)雜散動(dòng)態(tài)范圍(SFDR)為75.2 dB。整個(gè)ADC的功耗為15 mW??梢詽M足模擬電路高線性度和低功耗的要求。
5 結(jié)束語(yǔ)
本文給出了一種高性能低功耗流水線ADC設(shè)計(jì)方法,它對(duì)比較器進(jìn)行了特殊處理,并去除了采樣保持電路,同時(shí)引入運(yùn)放共享技術(shù),使電路所需的運(yùn)放數(shù)目比傳統(tǒng)流水線ADC減少了一半,從而大大降低了功耗。該ADC電路在1.2 V供電電壓下,采樣率可達(dá)60 MHz,ENOB為9.67 bit,功耗為15 mW。
評(píng)論