<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 測試測量 > 設(shè)計應(yīng)用 > 基于Cortex-M3的微控制器熱電偶測量系統(tǒng)

          基于Cortex-M3的微控制器熱電偶測量系統(tǒng)

          作者: 時間:2013-01-15 來源:網(wǎng)絡(luò) 收藏

           器件連接/參考

          本文引用地址:http://www.ex-cimer.com/article/192859.htm

            ADuCM360:基于3的,內(nèi)置雙通道24位Σ-Δ型ADC

            ADP1720-3.3:低壓差線性穩(wěn)壓器

            評估和設(shè)計支持

            電路評估板

            CN-0300評估板(EVAL-CN0300-EB1Z)包含USB-SWD/UART和SEGGER J-Link Lite電路板

            設(shè)計和集成文件

            原理圖、布局文件、物料清單、ADuCM360源代碼

            電路功能與優(yōu)勢

            本電路在精密溫度監(jiān)控應(yīng)用中使用ADuCM360精密模擬,并相應(yīng)地控制4 mA至20 mA的輸出電流。ADuCM360集成雙通道24位Σ-Δ型模數(shù)轉(zhuǎn)換器(ADC)、雙通道可編程電流源、12位數(shù)模轉(zhuǎn)換器(DAC)、1.2 V內(nèi)置基準電壓源以及ARM 3內(nèi)核、126 KB閃存、8 KB SRAM和各種數(shù)字外設(shè),例如UART、定時器、SPI和I2C接口。

            在該電路中,ADuCM360連接到一個T型和一個100 Ω鉑電阻溫度檢測器(RTD)。RTD用于冷結(jié)補償。低功耗3內(nèi)核將ADC讀數(shù)轉(zhuǎn)換為實際溫度值。支持的T型溫度范圍是200°C至+350°C,而此溫度范圍所對應(yīng)的輸出電流范圍是4 mA至20 mA.

            該電路為測量提供了完整的解決方案,所需外部元件極少,并且可針對高達28 V的環(huán)路電壓采用環(huán)路供電。

          具有熱電偶接口、用作溫度監(jiān)控器控制器的ADuCM360

            圖1. 具有熱電偶接口、用作溫度監(jiān)控器控制器的ADuCM360(原理示意圖,未顯示所有連接)

            電路描述

            本應(yīng)用中用到ADuCM360的下列特性:

            12位DAC輸出及其靈活的片內(nèi)輸出緩沖器用于控制外部NPN晶體管BC548.通過控制此晶體管的VBE電壓,可將經(jīng)過47 Ω負載電阻的電流設(shè)置為所需的值。

            DAC為12位單調(diào)式,但其輸出精度通常在3 LSB左右。此外,雙極性晶體管引入了線性誤差。為提高DAC輸出的精度并消除失調(diào)和增益端點誤差,ADC0會測量反饋電壓,從而反映負載電阻(RLOAD)兩端的電壓。根據(jù)此ADC0讀數(shù),DAC輸出將通過源代碼糾正。這樣就針對4 mA至20 mA的輸出提供了±0.5°C的精度。

            24位Σ-Δ型ADC內(nèi)置PGA,在軟件中為熱電偶和RTD設(shè)置32的增益。ADC1在熱電偶與RTD電壓采樣之間連續(xù)切換。

            可編程激勵電流源驅(qū)動受控電流流過RTD.雙通道電流源可在0 μA至2 mA范圍內(nèi)以一定的階躍進行配置。本例使用200 μA設(shè)置,以便將RTD自熱效應(yīng)引起的誤差降至最小。

            ADuCM360中的ADC內(nèi)置了1.2 V基準電壓源。內(nèi)部基準電壓源精度高,適合測量熱電偶電壓。

            ADuCM360中ADC的外部基準電壓源。測量RTD電阻時,我們采用比率式設(shè)置,將一個外部基準電阻(RREF)連接在外部VREF+和VREF?引腳上。由于該電路中的基準電壓源為高阻抗,因此需要使能片內(nèi)基準電壓輸入緩沖器。片內(nèi)基準電壓緩沖器意味著無需外部緩沖器即可將輸入泄漏影響降至最低。

            偏置電壓發(fā)生器(VBIAS)。VBIAS功能用于將熱電偶共模電壓設(shè)置為AVDD/2 (900 mV)。同樣,這樣便無需外部電阻,便可以設(shè)置熱電偶共模電壓。

            ARM Cortex-M3內(nèi)核。功能強大的32位ARM內(nèi)核集成了126 KB閃存和8 KB SRAM存儲器,用來運行用戶代碼,可配置和控制ADC,并利用ADC將熱電偶和RTD輸入轉(zhuǎn)換為最終的溫度值。它還可以利用來自AIN9電壓電平的閉環(huán)反饋控制并持續(xù)監(jiān)控DAC輸出。出于額外調(diào)試目的,它還可以控制UART/USB接口上的通信。

            UART用作與PC主機的通信接口。這用于對片內(nèi)閃存進行編程。它還可作為調(diào)試端口,用于校準DAC和ADC.

            兩個外部開關(guān)用來強制該器件進入閃存引導(dǎo)模式。使SD處于低電平,同時切換RESET按鈕,ADuCM360將進入引導(dǎo)模式,而不是正常的用戶模式。在引導(dǎo)模式下,通過UART接口可以對內(nèi)部閃存重新編程。

            J1連接器是一個8引腳雙列直插式連接器,與CN0300支持硬件隨附的USB-SWD/UART板相連。配合J-Link-Lite板可對此應(yīng)用電路板進行編程和調(diào)試。參見圖3.

            熱電偶和RTD產(chǎn)生的信號均非常小,因此需要使用可編程增益放大器(PGA)來放大這些信號。

            本應(yīng)用使用的熱電偶為T型(銅-康銅),其溫度范圍為?200°C至+350°C,靈敏度約為40 μV/°C,這意味著ADC在雙極性模式和32倍PGA增益設(shè)置下可以覆蓋熱電偶的整個溫度范圍。

            RTD用于冷結(jié)補償。本電路使用的RTD為100 Ω鉑RTD,型號為Enercorp PCS 1.1503.1.它采用0805表貼封裝,溫度變化率為0.385 Ω/°C.

            注意,基準電阻RREF必須為精密5.6 kΩ (±0.1%)電阻。

            本電路必須構(gòu)建在具有較大面積接地層的多層電路板(PCB)上。為實現(xiàn)最佳性能,必須采用適當(dāng)?shù)牟季帧⒔拥睾腿ヱ罴夹g(shù)(請參考指南MT-031--“實現(xiàn)數(shù)據(jù)轉(zhuǎn)換器的接地并解開AGND和DGND的謎團”、指南MT-101--“去耦技術(shù)”以及ADuCM360TCZ評估板布局)。

            評估本電路所用的PCB如圖2所示。

           本電路所用的EVAL-CN0300-EB1Z板

            圖2. 本電路所用的EVAL-CN0300-EB1Z板

          連接至USB-SWD/UART板和SEGGER J-Link-Lite板的EVAL-CN0300-EB1Z板

            圖3. 連接至USB-SWD/UART板和SEGGER J-Link-Lite板的EVAL-CN0300-EB1Z板

            代碼的校準部分

            圖3顯示了USB-SWD/UART板。此板用作PC USB端口的接口板。該USB端口可用于通過基于UART的下載器對器件進行編程。它也可用于連接PC上的COM端口(虛擬串行端口)。這是運行校準程序所需要的條件。

            J-Link-Lite插入USB-SWD/UART板的20引腳連接器中。J-Link-Lite提供代碼調(diào)試和編程支持。它通過另一個USB連接器連接至PC.

            代碼說明

            用于測試本電路的源代碼可從ADuCM360產(chǎn)品頁面下載(zip壓縮文件)。源代碼使用示例代碼隨附的函數(shù)庫。圖4顯示了利用Keil μVision4工具查看時項目中所用的源文件列表。

          μVision4中查看的源文件

            圖4. μVision4中查看的源文件

            可調(diào)整編譯器#define值(calibrateADC1和calibrateDAC),以使能或禁用ADC和DAC的校準程序。

            要校準ADC或DAC,接口板(USB-SWD/UART)必須連接至J1和PC上的USB端口。可使用“超級終端”等COM端口查看程序來查看校準菜單并逐步執(zhí)行校準程序。

            校準ADC時,源代碼會提示用戶將零電平和滿量程電壓連接至AIN2和AIN3.注意,AIN2是正輸入端。完成校準程序后,ADC1INTGN和ADC1OF寄存器的新校準值就會存儲到內(nèi)部閃存中。

            校準DAC時,應(yīng)通過精確的電流表連接VLOOP+輸出端。DAC校準程序的第一部分校準DAC以設(shè)置4 mA輸出,第二部分則校準DAC以設(shè)置20 mA輸出。用于設(shè)置4 mA和20 mA輸出的DAC代碼會存儲到閃存中。針對最終的4 mA和20 mA設(shè)置在AIN9處測得的電壓也會記錄下來并存儲到閃存中。由于在AIN9處的電壓與流經(jīng)RLOOP的電流線性相關(guān),因此這些值會用于計算DAC的調(diào)整因子。這種閉環(huán)方案意味著,可以使用片內(nèi)24位Σ-Δ型ADC進行微調(diào)而消除DAC和基于晶體管的電路上的所有線性誤差。

            UART配置為波特率9600、8數(shù)據(jù)位、無極性、無流量控制。如果本電路直接與PC相連,則可使用“超級終端”等通信端口查看程序來查看該程序發(fā)送給UART的結(jié)果,如圖5所示。

          使用“超級終端”等通信端口查看程序來查看該程序發(fā)送給UART的結(jié)果

            要輸入校準程序所需的字符,請在查看終端中鍵入所需字符,然后ADuCM360 UART端口就會收到該字符。

            5. 校準DAC時的“超級終端”輸出

            代碼的溫度測量部分

            要獲得溫度讀數(shù),應(yīng)測量熱電偶和RTD的溫度。RTD溫度通過一個查找表轉(zhuǎn)換為其等效熱電偶電壓(T型熱電偶請參見ISE, Inc.的ITS-90表)。將這兩個電壓相加,便可得到熱電偶電壓的絕對值。

            首先,測量熱電偶兩條線之間的電壓(V1)。測量RTD電壓并通過查找表轉(zhuǎn)換為溫度,然后再將此溫度轉(zhuǎn)換為其等效熱電偶電壓(V2)。然后,將V1和V2相加,以得出整體熱電偶電壓,接著將此值轉(zhuǎn)換為最終的溫度測量結(jié)果。

            對熱電偶而言,固定數(shù)量的電壓所對應(yīng)的溫度會存儲在一個數(shù)組中。其間的溫度值利用相鄰點的線性插值法計算。

            圖6顯示了使用ADuCM360上的ADC1測量整個熱電偶工作范圍內(nèi)的52個熱電偶電壓時獲得的誤差。最差情況的總誤差小于1°C.

          通過分段線性逼近法利用ADuCM360/ADuCM361所測52個校準點時的誤差

            圖6. 通過分段線性逼近法利用ADuCM360/ADuCM361所測52個校準點時的誤差


          上一頁 1 2 下一頁

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();