一種MCU時鐘系統(tǒng)的設計
時鐘系統(tǒng)是微控制器(MCU)的一個重要部分,它產(chǎn)生的時鐘信號要貫穿整個芯片。時鐘系統(tǒng)設計得好壞關(guān)系到芯片能否正常工作。在工作頻率較低的情況下,時鐘系統(tǒng)可以通過綜合產(chǎn)生,即用Verilog/VHDL語言描述電路,并用EDA工具進行綜合。然而,用工具綜合存在電路性能低、優(yōu)化率不高的問題,不適合應用在各種高性能微處理器芯片上。而采用人工設計邏輯并手工輸入電路圖甚至物理版圖的方式,能使設計的電路靈活,性能更好?;谶@些考慮,設計了一個MCU時鐘系統(tǒng)。
本文引用地址:http://www.ex-cimer.com/article/193473.htm1基本時鐘輸入的選擇
(1)CPU核分微處理器(MPU)和微控制器(MCU),兩者的基本時鐘一般都以單頻方波的形式提供。時鐘有三種產(chǎn)生方式: (1)用晶體振蕩器產(chǎn)生精確而穩(wěn)定的時鐘信號;
(2)用壓控振蕩器產(chǎn)生可調(diào)頻率范圍較寬的時鐘信號;
(3)結(jié)合以上兩種技術(shù),用壓控振蕩器生成時鐘信號。
基本時鐘信號的產(chǎn)生可以有芯片外和芯片內(nèi)兩種方法。但是時鐘信號必須是穩(wěn)定的信號,對于穩(wěn)定度要求特別高的場合(如MPU和MCU),采用芯片外提供是必不可少的。故本設計采用外接晶振的方法。
2 兩相時鐘方案
時鐘技術(shù)是決定和影響電路功耗的主要因素,時鐘偏差是引起電路競爭冒險的主要原因。為了消除競爭、提高頻率、降低功耗,在基本時鐘方案方面,MPU和MCU一般有三種選擇:單相時鐘、多相時鐘和沿觸發(fā)方案。在當前的設計中,沿觸發(fā)方案由于在數(shù)據(jù)傳遞方面有一定困難已很少被使用。單相時鐘方案因為在時序和傳輸上比較簡單可靠,在所有的方案中使用的晶體管也是最少,所以被一些高性能芯片使用,如DEC公司(現(xiàn)被HP公司并購)的Alpha21664微處理器。但是,對CMOS電路來說,采用單相時鐘就無法使用動態(tài)電路,而且因組合邏輯塊中邏輯元件的速度高低都受到限制而呈現(xiàn)困難。
圖1是一個單相有限狀態(tài)機,圓圈內(nèi)為組合邏輯塊CL。
設TL+TH=TP,其中TP為時鐘周期,TH和TL分別為時鐘高電平和低電平時間。如果要使時鐘定時與數(shù)據(jù)無關(guān),則最長的傳播延遲必須小于TP,信號(甚至可能是由于內(nèi)部競爭冒險產(chǎn)生的尖峰所造成的假信號)到達CL輸出端可能取的最短時間必須大于TH。令TCL代表CL延遲范圍,則:
TH
(1)式表明,信號通過CL的每一個延遲都必須介于TH和TP之間。正是這種雙邊約束特性使單相時鐘難以實現(xiàn)。對于多相時鐘,則可以消除這種雙邊約束,而使其轉(zhuǎn)化為單邊約束。圖2(a)所示為采用兩相非重疊時鐘φ1和φ2(φ1×φ2=0),對應時鐘波形示于圖2(b),T1和T3分別是φ1和φ2為高電平時的時間,T2是φ1到φ2之間電平為低的時間,T4則是φ2到φ1之間電平為低的時間。當φ2電平變高時信號開始通過CL傳輸,并且必須在φ1電平變低之前結(jié)束。于是得:
TCL T1+ T3+ T4 或 TCL
其中,TP= T1+ T2+ T3+ T4
這樣就可把雙邊約束(1)式簡化為單邊約束(2)式了。無論是有效信號或是無效信號,都可以以任意快的速度通過CL而不會造成競爭。
當然,相數(shù)過多又會使設計復雜度提高,因此這里選擇了兩相不重疊時鐘。
3時鐘系統(tǒng)邏輯電路設計
3.1兩相不重疊時鐘產(chǎn)生的方法
兩相不重疊時鐘產(chǎn)生電路如圖3所示。clk為外部晶振產(chǎn)生的送入MCU的單相時鐘,I1是MCU內(nèi)部產(chǎn)生的保護信號,正常工作時I1為低電平,發(fā)生故障時(如由于噪聲干擾導致PSEN和RD、WR同時有效的錯誤發(fā)生時) I1變成高電平而關(guān)閉時鐘;當系統(tǒng)復位時,會使得圖3中I1為低電平,恢復clk的輸入。由于正常情況下PD為低電平,所以clk等同于經(jīng)過三個非門變成圖中的單相輸入信號,加到用或非門交叉而構(gòu)成的R-S觸發(fā)器,單相時鐘從左邊加到一個或非門上,反相后加到另一個或非門上,這樣得到的CK1和CK2是不重疊的。單相時鐘與雙相時鐘的對應關(guān)系如圖3所示。
當信號V變成高電平時(因為正常工作時PD一直保持為0),M1管關(guān)斷,信號就一直保存在靜態(tài)鎖存器中。每當時鐘信號變高時,就把靜態(tài)鎖存器的輸出傳給W,使得W一直處于低電平而不影響或非門A1,故圖3中A1可以簡化為二輸入。
在時鐘受到一個邏輯信號(也就是門控時鐘)控制的
情況下,可能會有一些動態(tài)節(jié)點不被刷新。為了避免這種錯誤,采用由一個NMOS控制管M2加兩個交叉耦合反相器組成靜態(tài)鎖存器。其中反饋管采用的倒比W/L很小(1),可以作為電平恢復器件,這樣有利于保存信息。
3.2 二分頻電路
通常把一周期指令的執(zhí)行時間稱為一個機器周期,并進一步劃分為2~6個狀態(tài)(高速MCU到標準MCU),每一狀態(tài)有兩相時鐘,即為兩個節(jié)拍,每個節(jié)拍持續(xù)一個振蕩周期。如何向芯片內(nèi)部提供一個兩節(jié)拍的時鐘信號呢?這就需要二分頻電路對外部振蕩信號進行分頻,使得在每個時鐘的前半周期,節(jié)拍1信號有效;后半周期,節(jié)拍2信號有效。
二分頻電路是由兩個靜態(tài)鎖存器組成的觸發(fā)器,如圖4所示。其中CK1和CK2是兩相不重疊時鐘,當CK1=0,CK2=1時,靜態(tài)鎖存器b的輸出經(jīng)過一個反相器提供CK3和CK4,使得CK3=0,CK4=1經(jīng)過半個周期后,CK1=1,CK2=0,M4斷開,低電平信號存儲在靜態(tài)鎖存器a中,使CK3的值不變,這樣CK3延續(xù)了一個周期的低電平(高電平),就形成了兩分頻,如此形成的時鐘信號周期增加一倍。CK4由CK3經(jīng)過一個反相器形成,兩者相位相反。
3.3時鐘驅(qū)動器及分配
影響時鐘偏差主要有以下幾個因素
·連接時鐘數(shù)的連線;
·時鐘數(shù)的拓撲結(jié)構(gòu);
·時鐘的驅(qū)動;
·時鐘線的負載;
·時鐘的上升及下降時間。
在MCU內(nèi)部,時鐘信號要驅(qū)動大的負載,是負載最重的信號,有可能導致電路延時和時鐘偏差。消除的方法之一是增強驅(qū)動能力。設計的驅(qū)動器如圖4(二分頻電路除外)所示。最初的時鐘信號由二分頻電路輸出的CK3和CK4提供。值得注意的是,為了提高翻轉(zhuǎn)速度增加了旁路管,即PMOS晶體管M5、M7和NMOS晶體管M6、M8,而且它們的W/L比要取得足夠大(如設計的為350/1),這樣就不需要外部附加自舉電容。當然為了防止導通電流過激(di/dt),可以加入電阻起穩(wěn)定作用。該時鐘驅(qū)動器的一個重要特點,就是所產(chǎn)生的兩相不重疊時鐘的相位與時鐘負載無關(guān),輸出Clk3和Clk4能高到VDD電平和低到地電平。
在MCU內(nèi)部合理分配時鐘網(wǎng)絡。通常有兩種方法:線形緩沖和樹形緩沖??紤]到MCU內(nèi)部時鐘負載比較大,采用圖5所示的樹形緩沖將時鐘電路分成若干分支。時鐘分配的各個分支在各級之間具有相同的相對扇出,同時每個分支所帶負載數(shù)目基本相同,因為不平衡的分支是時鐘歪斜的主要原因。
3.4低功耗設計
低功耗設計要求時鐘網(wǎng)絡盡量簡單,晶體管尺寸盡量小,并且應盡量減少不必要的電路節(jié)點翻轉(zhuǎn),所以設計的MCU一方面要大量采用只有三個元件組成的靜態(tài)鎖存器,參見圖3;另一方面要有三種工作功率管理模式,即正常、空閑、掉電三種方式,以滿足低功耗方式的應用。因此,內(nèi)部所使用的時鐘分三類,第一類送人部分控制器和數(shù)據(jù)通道(C
.
PU核),在低功耗方式(空閑)下時鐘關(guān)閉,如圖6中的Clk5和Clk6;第二類用于控制定時器,如Clk1和Clk2;第三類則用于控制中斷電路和串行口的時鐘,如Clk3和Clk4。后兩類不受低功耗方式的限制。
(1)在掉電方式(PD=1)下,時鐘信號發(fā)生器及內(nèi)部所有的功能部件都停止工作。如圖3所示,PD=1時,封鎖一個與非門和一個或非門,使V一直為低電平,輸給R-S觸發(fā)器的單相時鐘的狀態(tài)被固定,或為低電平或為高電平,這樣整個芯片的時鐘信號被凍結(jié)。
(2)在空閑方式(IDL=1)下,時鐘信號繼續(xù)提供給中斷邏輯、串行口、定時器,但CPU的時鐘被切斷了。如圖6所示,IDL=1時,或非門輸出為低電平,與非門輸出為高電平,通過時鐘驅(qū)動器使得Clk5=1、Clk6=0,這樣通往CPU的信號就被凍結(jié)了。
4設計驗證與總結(jié)
綜合圖3、圖4、圖6就構(gòu)成了整個時鐘系統(tǒng)。為了對電路進行邏輯仿真,首先在CADENCE的Composer-schematic中調(diào)用CSMC 0.6μm標準單元工藝庫,設置好管子參數(shù),畫出電路圖。然后進入Analog Artist Simulation環(huán)境進行參數(shù)較理想化的電路仿真。其中clk的脈寬為0.5μs,周期為1μs,將各種信號(如PD、IDL)的上升時間和下降時間設置為0.002μs,整個仿真時間取16μs,參考電壓為5V,得到的仿真結(jié)果如圖7所示??梢钥吹絀1=1時,通往內(nèi)部的各時鐘信號被封鎖;PD=1時,所有時鐘(Clk1~Clk6)被凍結(jié);而IDL=1時,只有通往CPU的Clk5和Clk6被凍結(jié),,因此各信號滿足設計要求。
評論