<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 測試測量 > 設(shè)計應(yīng)用 > 高壓開關(guān)柜隔離觸頭溫度監(jiān)測

          高壓開關(guān)柜隔離觸頭溫度監(jiān)測

          作者: 時間:2011-01-25 來源:網(wǎng)絡(luò) 收藏

            在圖2 中,A、B、C三相的六個光纖光柵溫度傳感器處于高電壓側(cè),分別安裝在靜觸頭孔徑內(nèi),而耦合器、波長解調(diào)器、控制器以及數(shù)據(jù)處理電路都處于地電位側(cè),安裝在控制室內(nèi),采用長距離的光纖傳輸來實現(xiàn)高電壓側(cè)絕緣隔離。圖中的A1、B1、C1,A2、B2、C2是本文設(shè)計的光纖光柵溫度傳感器,分別分布在的上側(cè)和下側(cè)A、B、C 三相上,在常溫下傳感器的波長分別為1548.5nm、1550.1nm、1551.6nm、1553.5nm、1555.5nm、1557.1nm,靈敏度為0.011nm/℃、0.013nm/℃、0.011nm/℃、0.010nm/℃、0.011nm/℃、0.012nm/℃,測量范圍為0110℃;耦合器為

            由7 個3dB耦合器組合而成的1′8耦合器;波長解調(diào)器為采用壓電陶瓷驅(qū)動標準具實現(xiàn)波長掃描,其工作波長范圍為15481558nm,覆蓋6 個傳感器在0110℃溫度變化時的所有波長帶;控制器在數(shù)據(jù)處理器的控制下實現(xiàn)波長解調(diào)器的掃描。

            3.3 觸頭溫度模型

            在運行時,觸頭、母線、電流互感器、柜體等構(gòu)成了多個熱源,及內(nèi)部各部件又構(gòu)成了復(fù)雜的熱阻網(wǎng)絡(luò)[14]。在此系統(tǒng)中,要通過理論推導(dǎo)出觸頭溫升與光纖光柵傳感器溫升間的數(shù)學(xué)關(guān)系是比較困難的,因此本文通過試驗方法建立了它們之間的數(shù)學(xué)模型。

            溫升實驗是在10kV 上進行的,實驗時三相觸頭接觸正常,工作額定電流為1kA,室溫為25℃。圖3 是上B 相的溫升過程曲線,可以看出光纖光柵傳感器測量的溫升變化要比觸頭的實際溫升變化慢,但它們的變化趨勢是相同的,大約在3h 以后溫度場變化趨于穩(wěn)定。測量溫度與實際溫度間的差值是由于傳感器采用非接觸方式測量溫度,它依靠靜觸頭的輻射來傳遞熱量。表1 是其溫升測量數(shù)據(jù)。

            

            可以看出在開關(guān)柜觸頭接觸正常、溫度變化穩(wěn)定后各個觸頭的實際溫升值DTC 與對應(yīng)的傳感器溫升值DTS之間的比例關(guān)系都在1.43 附近,取其平均值作為試驗結(jié)果,可建立觸頭的實際溫度與傳感器的測量溫度間的數(shù)學(xué)關(guān)系式為

            TC=K(TS-T)+T (3)

            式中 K=1.43;TS為光纖光柵溫度傳感器測量的溫度值;T為高壓開關(guān)柜環(huán)境溫度。

            3.4 系統(tǒng)的抗電磁干擾性分析

            為

            了檢驗光纖光柵傳感系統(tǒng)的抗電磁干擾能力,在高壓開關(guān)柜滿負荷工作,并且傳感器測量趨于穩(wěn)定的情況下,通過對開關(guān)柜采用突然掉電的方式來檢測溫度測量結(jié)果與電磁場的關(guān)系[15-16],實現(xiàn)抗電磁干擾能力的實驗。圖4 是在觸頭溫升趨于穩(wěn)定后,在試驗過程中安排了兩次停電并在一次側(cè)的B 相觸頭上測量的溫度數(shù)據(jù),圖4(a)是電流的變化過程圖,圖4(b)是電流變化引起的觸頭溫度變化曲線??梢娫谀妇€失去電流的情況下,引起了觸頭溫度的下降,但在恢復(fù)送電后又很快開始上升。從曲線可以看出測量的觸頭溫度對突然的停電與送電做出了反應(yīng),但這種溫度的升降是漸變的而不是突變的,說明電磁場的存在對傳輸光纖以及光纖光柵溫度傳感器沒有影響。如果電磁場的存在使測溫系統(tǒng)顯示的溫度較實際溫度偏高或偏低,那么當開關(guān)柜母線中一旦失去電流,電磁場消失時,溫度顯示會立即跳變到“實際值”,但這種跳變現(xiàn)象在實際試驗中并未發(fā)生。因此說明光纖光柵觸頭測溫系統(tǒng)具有很強的抗電磁干擾能力。

            4 實驗結(jié)果

            本光纖光柵觸頭溫度測量系統(tǒng)在變電站10kV高壓開關(guān)柜上進行了成功試用,圖5 是在高壓開關(guān)柜工作在70%的額定負荷范圍時對一次側(cè)B相觸頭在24 小時的記錄,它反應(yīng)了全天觸頭溫度的變化過程。從圖中可以看出,從午夜0點到早晨6 點之間觸頭的溫度最低,這一方面是由于用電負荷較小,另一方面與氣溫較低有關(guān);從早晨6 點開始隨著用電負荷的增大,觸頭的溫度也開始升高,到9點用電負荷趨于穩(wěn)定,但由于氣溫的逐漸升高觸頭溫度也開始上升,到14 點時溫度達到最高;從14點到18點之間由于氣溫的降低,觸頭的溫度也逐漸變小;同時從18 點后,由于用電負荷的增大,觸頭溫度又開始上升,到22 點時達到最高;此后隨著用電負荷的減小,觸頭溫度也逐漸降低。通過對24小時觸頭溫度的記錄分析可以看出,光纖光柵觸頭溫度測量系統(tǒng)能夠正常工作,其記錄數(shù)據(jù)正確反應(yīng)了觸頭溫度與開關(guān)柜的工作負荷和周圍空氣溫度之間的變化關(guān)系,說明了光纖光柵觸頭溫度測量系統(tǒng)的方案是可行的。

            

            5 結(jié)論

            本文利用光纖光柵傳感器的體積小、抗電磁干擾能力強、絕緣性好等優(yōu)點,代替電子類傳感器實現(xiàn)了對高壓開關(guān)柜,此方案不需要復(fù)雜的絕緣設(shè)計,因此具有簡單、可靠的優(yōu)點。此方案中,解決了光纖光柵溫度傳感器的應(yīng)變交叉敏感影響,在光路的復(fù)用上采用了空分復(fù)用加波分復(fù)用的方案,提高了系統(tǒng)的可靠性和實時性。此系統(tǒng)在10kV 高壓開關(guān)柜上進行了測試,系統(tǒng)能夠正常運行,說明本方案是可行的。


          上一頁 1 2 下一頁

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();