<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 光電顯示 > 設(shè)計(jì)應(yīng)用 > 提高LED內(nèi)量子與電光轉(zhuǎn)換效率的原理分析

          提高LED內(nèi)量子與電光轉(zhuǎn)換效率的原理分析

          作者: 時(shí)間:2012-11-08 來源:網(wǎng)絡(luò) 收藏

          的PN結(jié)上施加正向電壓時(shí),PN結(jié)會(huì)有電流經(jīng)過,電子和空穴在PN結(jié)過渡層中復(fù)合會(huì)產(chǎn)生光子。然而并不是每一對(duì)電子和空穴都會(huì)產(chǎn)生光子,由于PN結(jié)作為雜質(zhì)半導(dǎo)體,存在著材料品質(zhì)、位錯(cuò)因素以及工藝上的種種缺陷,會(huì)產(chǎn)生雜質(zhì)電離、激發(fā)散射和晶格散射等問題,使電子從激發(fā)態(tài)躍遷到基態(tài)時(shí)與晶格原子或離子交換能量時(shí)發(fā)生無輻射躍遷,也就是不產(chǎn)生光子,這部分能量不轉(zhuǎn)換成光能而轉(zhuǎn)換成熱能損耗在PN結(jié)內(nèi),于是就有一個(gè)復(fù)合載流子轉(zhuǎn)換效率,以Nint符號(hào)表示。

          本文引用地址:http://www.ex-cimer.com/article/199939.htm

          Nint=(復(fù)合載流子產(chǎn)生的光子數(shù)/復(fù)合載流子總數(shù))×100%

          當(dāng)然,很難去計(jì)算復(fù)合載流子總數(shù)和產(chǎn)生的光子總數(shù)。一般是通過測(cè)量輸出的光功率來評(píng)價(jià)這一效率,這個(gè)效率Nint就稱為內(nèi)效率。

          提高內(nèi)效率要從的制造材料、PN結(jié)外延生長(zhǎng)工藝以及LED發(fā)光層的出光方式上加以研究才可能提高LED的Nint,這方面經(jīng)過科技界的不懈努力,已有顯著提高,從早期的百分之幾已提高到百分之幾十,有了長(zhǎng)足的進(jìn)步,未來LED發(fā)展,還有提高Nint的很大空間。

          假設(shè)PN結(jié)中每個(gè)復(fù)合載流子都能產(chǎn)生一個(gè)光子,是不是可以說,LED的電一光轉(zhuǎn)換效率就達(dá)到100%? 回答是否定的。

          從半導(dǎo)體理論可以知道,由于不同的材料和外延生長(zhǎng)工藝的不同,所制成的LED的發(fā)光波長(zhǎng)是不同的。假設(shè)這些不同發(fā)光波長(zhǎng)的LED其內(nèi)效率均達(dá)到100%,但由于一個(gè)電子N型層運(yùn)動(dòng)到PN結(jié)有源層和一個(gè)空穴從P型層運(yùn)動(dòng)到PN結(jié)有源層,產(chǎn)生復(fù)合載流子所需的能量E與不同波長(zhǎng)的LED的能帶位置相關(guān)都不一樣。而不同波長(zhǎng)的光子的能量E也是不同的,電能到光能的變換有必然的損耗,下面舉例加以說明:

          例如一個(gè)入D=630nm的GaInAlP四元橙色LED,其正向偏置為VF≈2.2V,于是意味著它的一個(gè)電子與一個(gè)空穴復(fù)合成一個(gè)載流子所需的電勢(shì)能ER=2.2Ev,而一個(gè)入D=630nm的光子的勢(shì)能為E=Hc/入D≈1240/630≈1.97eV,于是電能到光能的轉(zhuǎn)換效率N(E-L)=1.97/2.2×100%≈90%,即有0.0.23eV的能量損失(EV為電子伏)。

          如果對(duì)一個(gè)GaN的藍(lán)光470nm的LED,則VF≈3.4V,于是EB≈3.4EeV,而EB≈1240/470≈2.64eV,于是Nb=2.64/3.4×100%≈78%,這是在假定Nint=100%時(shí)。若Nint=60%,則對(duì)于紅色LED,N(E-L)=90%×60%=54%,而對(duì)于藍(lán)色LED則有N(E-L)B=78%×60%=47s%??梢?,這就是LED的光一電轉(zhuǎn)換效率不是很高的原因。

          上面已經(jīng)了解到PN結(jié)有源層的電一光轉(zhuǎn)換效率不是很高,有相當(dāng)一部分電能沒有轉(zhuǎn)換成光能,而是轉(zhuǎn)換成熱能損耗在PN結(jié)內(nèi),成為PN結(jié)的發(fā)熱源。業(yè)界正在通過材料、工藝等機(jī)理上的努力去提高這一效率。如果施加在LED上的電功率全部變成光子能量,那么要問:這些光子能否全部逸出到空氣中“看見”?回答也是否定的。于是就有一個(gè)LED光子逸出率的問題存在??梢赃@樣來表示LED中產(chǎn)生的光子逸出到空氣中的比率。

          Nout=(逸出到空氣中的光子數(shù)/PN結(jié)產(chǎn)生的光子總數(shù))×100%

          以上公式可以為L(zhǎng)ED的內(nèi)量子效率。為方便說明,我們假定LED的材料為GaAs,其材料的折射系數(shù)為N1=3.9,與芯片接觸的界面是空氣,它的光折射系數(shù)N0=1,由光傳播理論的光線折射定律可以知道,兩種不同界面的折射系數(shù)不相同時(shí),其垂直于界面的光的反射函數(shù)可用下式來表示:

          R(L)=[(N1-N0)/(N1+N0)]2×100%

          對(duì)于GaAs與空氣,則有,

          R(L)=[(3.9-1)/(3.9+1)]2×100%=35.02

          這就是說,有35.02%的光子將被反射回GaAs材料中,即反射回芯片內(nèi),不能逸出到空氣中,僅有64.98%有可能逸出到空氣中。然而,LED的發(fā)光若是一個(gè)點(diǎn)光源時(shí),其邊界全發(fā)射臨界的半角Θc與界面兩種材料的折射系數(shù)有關(guān),并由以下公式確定:Θc=Arcsin(Ndn1)

          對(duì)于GaAs和空氣:Θc=Arcsin(1/3.9)=14.90°

          邊界全發(fā)射臨界角為29.8°,超過這個(gè)角度不能發(fā)射到空氣中,顯然這對(duì)一個(gè)球面而言,這個(gè)角度僅8.27%的區(qū)域能全發(fā)射,顯然內(nèi)量子效率是極低的。

          當(dāng)然對(duì)LED芯片來說,它是一個(gè)六面體,并非點(diǎn)光源,在不計(jì)電極擋光時(shí),這個(gè)六面體的六個(gè)面均可有一個(gè)全發(fā)光臨界角,共有49.6%的出光區(qū)域。事實(shí)上,LED由于要引出電極、固定在引線框架上等原因,還做不到六個(gè)面出光,也就是達(dá)不到49.6%的全發(fā)射區(qū)域。LED內(nèi)量子效率一般僅在20%左右,它還有很大的提升空間,就是要綜合LED芯片結(jié)構(gòu)、封裝結(jié)構(gòu)、材料折射系數(shù)等方面因素加以解決,來提高出光效率。

          近幾年因環(huán)保、節(jié)能、半導(dǎo)體的綜合優(yōu)勢(shì),LED取代傳統(tǒng)光源已鋒芒畢露,但需要LED的發(fā)光效率有更大的突破才可以實(shí)現(xiàn)廣泛應(yīng)用,要提高發(fā)光效率就跟以上內(nèi)量子效率與效率息息相關(guān)!技術(shù)提高的同時(shí)帶動(dòng)成本下降,半導(dǎo)體照明才可以發(fā)揮科技優(yōu)勢(shì)!



          關(guān)鍵詞: LED 量子 電光 分析

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();