<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 光電顯示 > 設(shè)計(jì)應(yīng)用 > LED集成封裝的那些事,看這篇就懂了

          LED集成封裝的那些事,看這篇就懂了

          作者: 時間:2016-01-26 來源:網(wǎng)絡(luò) 收藏

            多芯片集成是實(shí)現(xiàn)大功率白光照明的方式之一。本文歸納了集成的特點(diǎn),從產(chǎn)品應(yīng)用、模式,散熱處理和光學(xué)設(shè)計(jì)幾個方面對其進(jìn)行了介紹,并分析了集成封裝的發(fā)展趨勢,隨著大功率白光在照明領(lǐng)域的廣泛應(yīng)用,集成封裝也將得到快速發(fā)展。

          本文引用地址:http://www.ex-cimer.com/article/201601/286280.htm

            目前,實(shí)現(xiàn)大功率LED照明的方法有兩種:一是對單顆大功率LED芯片進(jìn)行封裝,二是采用多芯片集成封裝。對于前者來說,隨著芯片技術(shù)的發(fā)展,尺寸增大,品質(zhì)提高,可通過大電流驅(qū)動實(shí)現(xiàn)大功率LED,但同時會受到芯片尺寸的限制,后者具有更大的靈活性和發(fā)展?jié)摿?,可根?jù)照度不同來改變芯片的數(shù)量,同時它具有較高的性價(jià)比,使得LED集成封裝成為LED封裝的主流方向之一。

            集成封裝產(chǎn)品的應(yīng)用

            據(jù)報(bào)道,美國UOE公司于2001年推出了采用六角形鋁板作為基板的多芯片組合封裝的Norlux系列LED;Lanina Ceramics公司于2003年推出了采用在公司獨(dú)有的金屬基板上低溫?zé)Y(jié)陶瓷(LTCCM)技術(shù)封裝的大功率LED陣列;松下公司于2003年推出由64顆芯片組合封裝的大功率白光LED;億光推出的6.4W、8W、12W的COB LED系列光源,采用在MCPCB基板多芯片集成的方式,減少了熱傳遞距離,降低了結(jié)溫。

            李建勝等在分析LED日光燈各種技術(shù)方案的基礎(chǔ)上,采用COB工藝,將小功率芯片直接固定在鋁基板上,制成高效散熱的COB LED日光燈,從2009年開始已經(jīng)用45000支LED日光燈對500輛世博公交車和近4000輛城市公交車進(jìn)行改裝,取代原有熒光燈,得到用戶好評,服務(wù)于上海世博會及城市交通。

            楊朔利用多芯片集成封裝的LED光源模塊開發(fā)出一款LED防爆燈,采用了熱管散熱技術(shù)。這種LED防爆燈亮度高,照射距離長,可靠性高,散熱性能好,壽命長。

            LED集成封裝的特點(diǎn)

            集成封裝也稱多晶封裝,是根據(jù)所需功率的大小確定基板底座上LED芯片的數(shù)目,可組合封裝成1W、2W、3W等高亮度的大功率LED器件,最后,使用高折射率的材料按光學(xué)設(shè)計(jì)的形狀對芯片進(jìn)行封裝。

            集成封裝特有的封裝原理決定了它具有諸多的優(yōu)點(diǎn),如:(1)就我國而言大功率芯片的研發(fā)處于落后的位置,采用集成封裝不失為一種發(fā)展的捷徑,更符合我國的基本國情;(2)芯片可以設(shè)計(jì)為串聯(lián)或者并聯(lián),靈活地適應(yīng)不同的電壓和電流,便于驅(qū)動器的設(shè)計(jì),提高光源的光效和可靠性;(3)一定面積的基板上芯片的數(shù)目可以自由控制,根據(jù)客戶的要求,可以封裝成點(diǎn)光源或者面光源,形式多樣;(4)芯片直接基板相連,降低了封裝熱阻,散熱問題易處理。

            然而,對于集成封裝而言,同樣存在一些不足:(1)由于多芯片集成封裝在一塊基板上,導(dǎo)致所得的光源體積較大;(2)多顆芯片通過串并聯(lián)的方式組合在一起,相對于單顆芯片而言其可靠性較差,將導(dǎo)致整體光源受影響;(3)雖然多芯片封裝相對于單顆同功率大芯片來說,散熱能力強(qiáng),但由于多顆芯片同時散熱,熱散失程度不同,會引起芯片間的溫度不同,影響壽命,故散熱問題的處理也很關(guān)鍵;(4)二次光學(xué)的設(shè)計(jì)問題,多芯片出光角度不同,需要在一次光學(xué)設(shè)計(jì)的基礎(chǔ)上進(jìn)行二次光學(xué)設(shè)計(jì),以滿足用戶的要求。

            集成封裝過程中機(jī)械、熱學(xué)、光學(xué)的研究

            集成封裝由于其所具有的突出優(yōu)點(diǎn),已經(jīng)成為了LED封裝方式的主流方向,近年來引起很多企業(yè)和科研院所的關(guān)注并開展了大量的研究,申請了相關(guān)的專利,這些都在極大的促進(jìn)集成封裝技術(shù)的發(fā)展。

            (1)封裝結(jié)構(gòu)模式

            當(dāng)前多芯片集成封裝的主流形式就是多顆芯片之間以串并聯(lián)的方式直接與基板相連接,然后對芯片進(jìn)行獨(dú)立封裝或者是封裝于同一透鏡下面。

            徐向陽等申請的專利中,將多顆芯片直接固晶在鋁基板上,涂覆熒光粉后,再在每顆LED芯片外面封蓋一個光學(xué)透鏡。工藝簡單,封裝材料精簡,同時熱阻降低,光效提高,此外還便于組裝成LED照明燈具產(chǎn)品,相對于同功率的單顆芯片封裝模式而言,COB模塊化LED封裝技術(shù)具有諸多優(yōu)點(diǎn)。

            李建勝根據(jù)一般集成封裝中存在的層結(jié)合面和較長的熱傳導(dǎo)距離問題提出了一種COB集成封裝工藝。即在鋁質(zhì)PCB集成電路板上刻一些有利于芯片發(fā)光光線擴(kuò)散的反光腔,將多顆芯片逐一植入腔內(nèi),同時在其周圍繪制PCB線路,將芯片電極引線焊接至此,導(dǎo)通電路,最后在腔周圍堆積壘成環(huán)形圍柵,在其內(nèi)涂敷硅膠和熒光粉,一次形成一體化的LEDCOB組件。這種設(shè)計(jì)將芯片與散熱器直接相連,減小了結(jié)構(gòu)熱阻,散熱效果遠(yuǎn)好于普通封裝結(jié)構(gòu),提高了LED的出光率。

            李炳乾等采用COB技術(shù)和陣列化互聯(lián)的方式制備出白光LED光源模塊,他們將熒光粉層涂敷在出光板上,提高了出光的均勻性和熒光粉的穩(wěn)定性;同時將陣列化互連方式與電流降額使用相結(jié)合,減少了傳統(tǒng)串聯(lián)和并聯(lián)連接方法時一個芯片損壞對其他芯片工作狀態(tài)的影響的缺陷,提高了系統(tǒng)可靠性,這種封裝結(jié)構(gòu)達(dá)到了簡化工藝的目的。

            總體上,不同專利所描述的集成封裝的結(jié)構(gòu)模式和原理都大同小異,差別主要在于所選的焊接方式、反光腔內(nèi)壁的涂覆材料以及所選基板的不同,改變集成封裝的思維方式,使集成封裝在白光LED封裝中得到更廣泛的應(yīng)用。

            (2)散熱處理

            集成封裝技術(shù)雖然是封裝的主要方向之一,但是散熱問題卻一直是集成封裝技術(shù)的瓶頸,我們知道通常LED高功率產(chǎn)品其光電轉(zhuǎn)換效率為20%,剩下80%的電能均轉(zhuǎn)換為熱能,處理好散熱問題,將會使LED光源的質(zhì)量上一個臺階。

            集成封裝的熱處理思路目前主要集中在:選擇導(dǎo)熱系數(shù)高的基板;縮短熱傳遞的距離;優(yōu)化固晶技術(shù)等方面。蟻澤純從芯片的工作數(shù)量以及芯片的集成密度等方面分析發(fā)現(xiàn)集成封裝的多芯片白光LED結(jié)溫隨著集成芯片數(shù)量的增加而增長,其發(fā)光效率隨著集成芯片數(shù)量的增加呈減小趨勢,因此芯片的數(shù)量及集成密度在集成封裝技術(shù)的應(yīng)用中也是一個很重要的影響因素。

            在公布號為CN102042500A專利中針對光源模塊的散熱性能提出改善方案,即在基板中心位置增加一柱形導(dǎo)熱裝置作為散熱區(qū),使光源模塊在發(fā)光時,各發(fā)光芯片所產(chǎn)生的熱可以更快速的由基板發(fā)散。

            在散熱基板材料的選擇中,最被看好的是陶瓷基板,陶瓷基板具有散熱性佳、耐高溫與耐潮濕等優(yōu)點(diǎn),逐漸成為大功率LED散熱基板的首選材料。程治國等以陶瓷基板(氧化鋁和氮化鋁,厚度0.5~1.0mm)為散熱基板,申請了發(fā)明專利。在專利中采用陶瓷基板金屬化技術(shù),共晶焊接技術(shù)進(jìn)行LED集成封裝,導(dǎo)熱性能大大改善,采用集成封裝可以使光源功率達(dá)到200W。

            LuqiaoYin研發(fā)出一種表層為LTCC,底層為AlNx的陶瓷基板,經(jīng)集成封裝測試發(fā)現(xiàn)長期點(diǎn)亮后PN結(jié)溫度只有70.8℃,經(jīng)ANSYS模擬觀察到跟陶瓷基板相連的鋁熱沉溫度只有39.3℃,當(dāng)驅(qū)動電流達(dá)到500mA時,也只有41.0℃。

            (3)光學(xué)設(shè)計(jì)

            大功率LED照明零組件在成為照明產(chǎn)品前,一般要進(jìn)行兩次光學(xué)設(shè)計(jì)。一次光學(xué)設(shè)計(jì)的目的是盡可能多的取出LED芯片中發(fā)出的光,二次光學(xué)設(shè)計(jì)的目的則是讓整個燈具系統(tǒng)發(fā)出的光能滿足設(shè)計(jì)需求。集成封裝中由于存在多顆芯片,因此對于二次光學(xué)系統(tǒng)設(shè)計(jì)的要求更高!

            為了實(shí)現(xiàn)道路照明所要求的矩形光斑分布,劉紅等依據(jù)光源特性和路面的光斑分布,通過折射定律建立透鏡母線的斜率方程,根據(jù)該方程設(shè)計(jì)了用于矩形光斑分布的LED路燈透鏡,采用正交優(yōu)化方法,利用LightTools軟件對所設(shè)計(jì)的透鏡光學(xué)系統(tǒng)進(jìn)行仿真比較研究,得到了一個矩形光斑分布的光學(xué)透鏡。仿真結(jié)果表明,該透鏡光學(xué)系統(tǒng)在高度為10m的照射條件下,照射面積為40m×10m的矩形光斑,均勻度為0.31。對有光斑尺寸要求的LED路燈透鏡來說,該方法提供了一種簡單有效的設(shè)計(jì)途徑。

            宋春發(fā)等人設(shè)計(jì)出一種用于多顆芯片集成封裝的大功率LED透鏡及其燈具。透鏡包括入光面和出光面,還包括環(huán)形反射面,所述出光面與反射面相貫,所述入光面為二次曲面,其曲面系數(shù)為:K=-1.2~-1.5,R=35~41mm,所述出光面為平面,所述反射面為二次曲面,其曲面系數(shù)為:K=-0.24~-0.26,R=23~29mm。這種設(shè)計(jì)中LED中心區(qū)域的光線經(jīng)出光面出射,LED邊緣的光線經(jīng)環(huán)形反射面出射,可以避免由于透鏡的視場角有限而損失LED光能,從而最大限度的收集LED發(fā)出的光線,提高燈具的發(fā)光效率。

            結(jié)束語

            近年來,隨著世界各國政府對LED發(fā)展的政策扶持以及LED芯片、封裝、應(yīng)用技術(shù)的不斷提高,LED照明產(chǎn)業(yè)得到長足發(fā)展。LED集成封裝雖然發(fā)展時間短,可借鑒的實(shí)際生產(chǎn)經(jīng)驗(yàn)有限,但是在實(shí)際照明工程中表現(xiàn)出極大的優(yōu)勢,得到了市場的肯定,已經(jīng)成為了封裝技術(shù)的主要趨勢之一。

            對于單顆芯片而言,雖然功率會越來越大,但要用到更大功率照明還是需要集成;同時隨著科技的進(jìn)步,芯片品質(zhì)的提升,集成封裝將會具有更大的價(jià)格優(yōu)勢,對于LED照明的推廣有著積極影響;隨著封裝技術(shù)的不斷提高以及封裝材料性能的進(jìn)步,光源的光效將會逐步提高,散熱處理必將更為簡便,集成封裝技術(shù)的優(yōu)勢也將愈加明顯,發(fā)展前景將越來越廣闊。



          關(guān)鍵詞: LED 封裝

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();