<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > 基于stm32f4的三維旋轉(zhuǎn)顯示平臺(tái)

          基于stm32f4的三維旋轉(zhuǎn)顯示平臺(tái)

          作者: 時(shí)間:2016-09-05 來源:網(wǎng)絡(luò) 收藏

            3.系統(tǒng)軟件設(shè)計(jì)

          本文引用地址:http://www.ex-cimer.com/article/201609/296520.htm

            3.1軟件控制流程:

            

           

            3.2關(guān)于實(shí)時(shí)生成體三維顯示數(shù)據(jù)的討論:

            一個(gè)瓦片64*32

            LED層FPGA*8:每個(gè)16*16LED

            中間層stm32*2:每個(gè)4LED層的FPGA,也即32*32

            由于經(jīng)過壓縮,一個(gè)led數(shù)據(jù)為4bits

            所以一個(gè)stm32每一幀所要生成的數(shù)據(jù)為32*32*0.5bytes = 512bytes

            轉(zhuǎn)速800轉(zhuǎn),一幀1/800s = 1.25ms = 1250000ns

            主頻168Mhz,指令周期 = 5.93ns

            約可執(zhí)行20萬多條指令

            假設(shè)fsmc總線的速度為50Mhz,則每幀寫入的時(shí)間大概在0.02ms內(nèi)

            程序總體思路

            事先算出所有電子幀上非零的點(diǎn),以及連續(xù)0的個(gè)數(shù),在每一個(gè)電子幀同步后,算出生成下一幀的數(shù)據(jù),寫入fifo

            輸入:線段端點(diǎn)的集合

            //input: endpoints of segments which formed the outline of a 3D model

            //x position with range 0-95

            //y position with range 0-95

            //z position with range 0-128

            /******************************************/

            //from later discussion, one of the Q format

            //type should replace the char type

            /******************************************/

            struct Coordinate_3D

            {

            _iq xPosition;

            _iq yPosition;

            _iq zPosition;

            };

            //after you get the intersection points in 3d coordinate, you need to remap it into 2d coordinate on the very electrical plane,

            //and the conversion is quite simple Coordinate_2D.yPosition = Coordinate_3D.zPosition; Coordinate_2D.xPosition = sqrt(xPosition^2+yPosition^2)

            struct Coordinate_2D

            {

            char xPosition;

            char yPosition;

            };

            struct Line

            {

            struct Coordinate_3D beginPoint;

            struct Coordinate_3D endPoint;

            unsigned char color;

            };

            //frame structure to store the visible points in one electrical frame

            //need to be discussed

            //here's the prototype of the Frame structure, and basically the frame struture should contain the visible points,

            //and the zero points. As we have enclosed the number of zero points after each visible points in their own data structure,

            //only the number of zero points at the beginning of the whole frame should be enclosed in the frame struture

            struct Frame

            {

            int zerosBefore;

            PointQueue_t visiblePointQueue;

            };

            //we need a union structure like color plane with bit fields to store the color imformation of every four FPGAs in one data segment

            //actually, it's a kind of frustrateing thing that we had to rebind the data into such an odd form.

            union ColorPalette

            {

            struct

            {

            unsigned char color1 : 4;

            unsigned char color2 : 4;

            unsigned char color3 : 4;

            unsigned char color3 : 4;

            }distributedColor;

            unsigned short unionColor;

            };

            //and now we need a complete point structure to sotre all the imformation above

            //here we add a weight field = yPosition*96 + xPosition, which will facilitate

            //our sort and calculation of the zero points number between each visible point

            //it's important to understand that, 4 corresponding points on the LED panel

            //will share one visiblepoint data structure.(一塊stm32負(fù)責(zé)4塊16*16的LED,每塊對(duì)應(yīng)的點(diǎn)的4位顏色信息,拼成16位的數(shù)據(jù)段)

            struct VisiblePoint

            {

            struct Coordinate_2D coord;

            union Colorplane ColorPalette;

            int weight;

            int zerosAfter;

            };

            //as now you can see, we need some thing to store the visible points array

            typedef struct QueueNode

            {

            struct VisiblePoint pointData;

            struct QueueNode * nextNode;

            }QueueNode_t, *QueueNode_ptr;

            typedef struct

            {

            QueueNode_ptr front;

            QueueNode_ptr rear;

            }PointQueue_t;

            //finally, we will have 16*16 words(16 bits)to write into the fifo after each electrial frame sync cmd.

            //it may hard for us to decide the frame structure now, let's see how will the work flow of the algorithm be.

            //firstly, the overall function will be like this

            void Real3DExt(struct Line inputLines[], int lineNumber, struct Frame outputFrames[])

            //then we need some real implementation function to calculate the intersection points

            //with 0 = no intersection points, 1 = only have one intersection points, 2 = the input line coincides the given electrical plane

            //2 need to be treated as an exception

            //the range of the degree is 0-359

            //it's important to mention that each intersection point we calculate, we need to

            //remap its coordinate from a 32*32 field to x,y = 0-15, as each stm32 only have a 32*32

            //effective field(those intersection points out of this range belong to other stm32), which can be decided by its address

            int InterCal(struct Line inputLine, struct VisiblePoint * outputPoint, int degree)

            //so we will need something like this in the Real3DExt function:

            for (int j = 0; j < 360; j++)

            {

            for(int i = 0; i < lineNumber; i++ )

            InterCal(struct Line inputLine, struct VisiblePoint outputPoint, int degree);

            ......

            }

            /******************************************/

            //simple float format version of InterCal

            /******************************************/

            //calculate formula

            //Q = [-1,1,-1];

            //P = [1,1,-1];

            //V = Q - p = [-2,0,0];

            //Theta = pi/6;

            //Tmp0 = Q(1)*sin(Theta) - Q(2)*cos(Theta);

            //Tmp1 = V(1)*sin(Theta) - V(2)*cos(Theta);

            //Result = Q - (Tmp0/Tmp1)*V

            float32_t f32_point0[3] = {-1.0f,1.0f,-1.0f};

            float32_t f32_point1[3] = {1.0f,1.0f,-1.0f};

            float32_t f32_directionVector[3], f32_normalVector[3], f32_theta,

            f32_tmp0, f32_tmp1, f32_tmp2, f32_result[3];

            arm_sub_f32(f32_point0,f32_point1,f32_directionVector,3);

            f32_theta = PI/6.0f;

            f32_normalVector[0] = arm_sin_f32(f32_theta);

            f32_normalVector[1] = arm_cos_f32(f32_theta);

            f32_normalVector[2] = 0.0f;

            arm_dot_prod_f32(f32_point0, f32_normalVector, 3, &f32_tmp0);

            arm_dot_prod_f32(f32_directionVector, f32_normalVector, 3, &f32_tmp1);

            f32_tmp2 = f32_tmp0/f32_tmp1;

            arm_scale_f32(f32_normalVector, f32_tmp2, f32_normalVector, 3);

            arm_sub_f32(f32_point0, f32_normalVector, f32_result, 3);

            //and than we need to decide whether to add a new visible point in the point queue, or to update

            //the color field of a given point in the point queue(as 4 visible point share one data structure). from this point, you will find that, it may be

            //sensible for you not to diretly insert a new point into the end of point queue but to insert it in order

            //when you build the pointqueue. it seems more effective.

            void EnPointQueue(PointQueue_t * inputQueue, QueueNode_t inputNode);

            //finally we will get an sorted queue at the end of the inner for loop

            //than we need to calculate the number of invisible points between these visible points

            //and to store it in each frame structure. the main purpose to do so is to offer an quick generation

            //of the blank point(color field = 16'b0) between each electrical frame

            //the work flow will be like this:

            loop

            {

            dma output of the blank points;

            output of the visible points;

            }

            /******************************************/

            //some points need more detailed discussion

            /******************************************/

            //1.memory allocation strategy

            //a quite straight forward method will be establishing a big memnory pool in advance, but the drawback of this method

            //is that it's hard for you to decide the size of the memory pool. Another way would be the C runtime library method,

            // and you can use build-in function malloc to allocate the memory, but it will be a quite heavy load for the m3 cpu

            // as you need dynamic memeory allocation throughout the algorithm.

            //2.the choice of Q format of the IQMATH library

            //from the discussion above, the range of the coordnate is about 1-100, but the range of sin&cos is only 0-1,so there's a large gap between them.

            //may be we can choose iq24?? Simultaneously, another big problem will be the choice between IQMATH and arm dsp library as their q format is

            //incompatible with each other. as far as my knowledge is concerned, we should choose IQMATH with m3 without fpu, and cmsis dsp library with m4 with fpu.

            //more detail discussion about the range of the algorithm

            //x,y range is -64 to 64

            //the formula is

            //Tmp0 = Q(1)*sin(Theta) - Q(2)*cos(Theta);

            //Tmp0 range is -128 to 128

            //Tmp1 = V(1)*sin(Theta) - V(2)*cos(Theta);

            //Tmp1 range is -128 to 128

            //Result = Q - (Tmp1/Tmp2)*V

            //because the minimal precision of the coordinate is 1, so if the result of Tmp1/Tmp2 is bigger than 128, the Result will be

            //saturated. With the same reson, if (Tmp1/Tmp2)*V >= 128 or <= -127, the result will be saturated

            4.系統(tǒng)創(chuàng)新

            其一,由于高效解析算法的提出,大幅簡(jiǎn)化了真三維顯示器顯示數(shù)據(jù)的獲取難度,只需在PC端獲得當(dāng)前較為標(biāo)準(zhǔn)化的三維圖形的三角面頂點(diǎn)數(shù)據(jù)流文件,即可在真三維顯示平臺(tái)上顯示出來,使得真三維顯示器的整體顯示流程大為簡(jiǎn)化。

            其二,由于顯示體的結(jié)構(gòu)分為并行的若干區(qū)塊,各個(gè)區(qū)塊只顯示自身的部分,因此顯示屏幕的擴(kuò)大并不會(huì)造成數(shù)據(jù)計(jì)算量的大幅增加,這就使得本顯示器的擴(kuò)展性大大增強(qiáng),可以適用于多種多樣的顯示范圍與領(lǐng)域。

            其三,由于高效算法的優(yōu)化與區(qū)塊化顯示的優(yōu)勢(shì),并行結(jié)構(gòu)的計(jì)算量相對(duì)較少,這就使得實(shí)時(shí)控制得以實(shí)現(xiàn),大大增強(qiáng)了真三維顯示器的應(yīng)用領(lǐng)域。

            其四,高效算法與區(qū)塊化顯示使得本三維體顯示器不需要如國(guó)內(nèi)外其他同類產(chǎn)品的中所需的高速傳輸方式,因此大大減少了從產(chǎn)品研發(fā)到材料再到加工中各個(gè)環(huán)節(jié)的成本。

            5.評(píng)測(cè)與結(jié)論

            在作品的過程中,我們發(fā)現(xiàn)本作品雖然還不是很成熟,也同樣具備較大的應(yīng)用前景與價(jià)值。價(jià)格成本的極大降低,使得真三維立體顯示的門檻很低,那么在一些對(duì)清晰度要求不高,但是希望多層次全角度呈現(xiàn)三維圖像的應(yīng)用領(lǐng)域,我們的真三維立體顯示器能發(fā)揮較大的作用。

            附錄

            

           

            

           

            


          上一頁(yè) 1 2 下一頁(yè)

          關(guān)鍵詞: stm32f4 三維旋轉(zhuǎn)

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();