一種滿足USB規(guī)范的電源開關(guān)設(shè)計(jì)方案
1 引言
本文引用地址:http://www.ex-cimer.com/article/201609/310098.htm通用串行總線(UniversalSerialBus)使PC機(jī)與外部設(shè)備的連接變得簡單而迅速,隨著計(jì)算機(jī)以及與USB相關(guān)便攜式設(shè)備的發(fā)展,USB必將獲得更廣泛的應(yīng)用。由于USB具有即插即用的特點(diǎn),在負(fù)載出現(xiàn)異常的瞬間,電源開關(guān)會流過數(shù)安培的電流,從而對電路造成損壞。
本文設(shè)計(jì)的USB電源開關(guān)采用自舉電荷泵,為N型功率管提供2倍于電源的柵驅(qū)動電壓。在負(fù)載出現(xiàn)異常時,過流保護(hù)電路能迅速限制功率管電流,以避免熱插拔對電路造成損壞。
2 USB開關(guān)電路的整體設(shè)計(jì)思路
圖1為USB電源開關(guān)的整體設(shè)計(jì)。其中,VIN為電源輸入,VOUT為USB的輸出。在負(fù)載正常的情況下,由電荷泵產(chǎn)生足夠高的柵驅(qū)動電壓,使NHV1工作在深線性區(qū),以降低從輸入電源(VIN)到負(fù)載電壓(VOUT)的導(dǎo)通損耗。當(dāng)功率管電流高于1A時,Currentsense輸出高電平給過流保護(hù)電路(Currentlimit);過流保護(hù)電路通過反饋負(fù)載電壓給電荷泵,調(diào)節(jié)電荷泵輸出(VPUMP),從而使功率管的工作狀態(tài)由線性區(qū)變?yōu)轱柡蛥^(qū),限制功率管電流,達(dá)到保護(hù)功率管的目的。當(dāng)負(fù)載恢復(fù)正常后,Currentsense輸出低電平,電荷泵正常工作。
圖1 USB電源開關(guān)原理圖
3 電荷泵設(shè)計(jì)
圖2為一種自舉型(SelfBoost)電荷泵的電路原理圖。圖中,為時鐘信號,控制電荷泵工作。初始階段電容,C1和功率管柵電容CGATE上的電荷均為零。當(dāng)為低電平時,MP1導(dǎo)通,為C1充電,V1電位升至電源電位,V2電位增加,MP2管導(dǎo)通。假設(shè)柵電容遠(yuǎn)大于電容C1,V2上的電荷全部轉(zhuǎn)移到柵電容CGATE上。當(dāng)為高電平時,MN1導(dǎo)通,為C1左極板放電,V1電位下降至地電位,V2電位下降,MP2管截止,MN2管導(dǎo)通,給電容C1右極板充電至VIN。在的下個低電平時,V1電位升至電源電位,V2電位增加至2VIN,MP2管導(dǎo)通,VPUMP電位升至2VIN-VT。
圖2 自舉電荷泵原理圖
自舉電荷泵不需要為MN2和MP2提供柵驅(qū)動電壓,控制簡單,但輸出電壓會有一個閾值損失。圖3是改進(jìn)后的電荷泵電路圖,1和2為互補(bǔ)無交疊時鐘。由MN2、MN5、MP3、MP2和電容C2組成的次電荷泵為MN4、MP4提供柵壓,以保證其完全關(guān)斷和開啟。當(dāng)1為低電平時,MP1導(dǎo)通,電位增加,此時,V3電位為零,MP4導(dǎo)通,V2上的電荷轉(zhuǎn)移到柵電容CGATE上,VPUMP電位升高。當(dāng)1為高電平時,MP2導(dǎo)通,為C2充電,V4電位上升至電源電位,V3電位隨之上升,MP3導(dǎo)通,VPUMP電位繼續(xù)升高。MN3相當(dāng)于二極管,起單向?qū)щ姷淖饔谩?/p>
在VPUMP電壓升高到VIN+VT以后,MN3隔離V3到電源的通路,保證V3的電荷由MP3全部充入柵電容。這樣,C1和C2相互給柵電容充電,若干個時鐘周期后,電荷泵輸出電壓接近兩倍電源電壓。
在電荷泵輸出電壓升高的過程中,功率管提供的負(fù)載電流逐漸上升,避免在容性負(fù)載上引起浪涌電流。
圖3 改進(jìn)后的電荷泵
4 過流保護(hù)電路設(shè)計(jì)
當(dāng)出現(xiàn)過載和短路故障時,負(fù)載電流達(dá)到數(shù)安培,需要精確的限流電路為功率管和輸入電源提供保護(hù)。對于MOS器件,只有工作在飽和區(qū)時的電流容易控制。限流就是通過反饋負(fù)載電壓,調(diào)節(jié)電荷泵輸出電壓來實(shí)現(xiàn)的。圖4是限流電路的原理圖。
圖4 限流電路原理圖
N型功率管NHV的源與P型限流管MP6的柵相接,N型功率管NHV的柵與P型限流管MP6的源相接。從而達(dá)到控制功率管柵源壓降的目的。
當(dāng)負(fù)載電流超過1A時,電流限信號(VLIMIT)為高電平,MN7導(dǎo)通,柵電荷經(jīng)MP6流向地,柵電壓減小,功率管工作在飽和區(qū)。C1、C2為電荷泵電容值,在一個時鐘周期T內(nèi),由電荷泵充入的柵電荷為:
當(dāng)功率管柵壓穩(wěn)定時,電荷泵充入的柵電荷等于限流管放掉的柵電荷。限流管泄放電流為:
得功率管和限流管的電流關(guān)系:
式中,VTP和VTN分別是P型管和N型管閾值電壓,M為N型功率管的并聯(lián)數(shù)。
通過設(shè)置NHV和MP6寬長比、功率管的并聯(lián)個數(shù)、電荷泵的時鐘周期以及電荷泵的電容值,就可以確定功率管的電流。當(dāng)負(fù)載恢復(fù)正常后,電流限信號(VLIMIT)為低電平,MN7截止,電荷泵正常工作,為功率管提供2倍于電源的柵驅(qū)動電壓。這種過流保護(hù)電路通過MP6泄放功率管的柵電荷,易實(shí)現(xiàn)限流功能,適用于N型功率管的電源開關(guān)。
5 仿真結(jié)果與討論
圖5為負(fù)載正常情況下負(fù)載輸出電壓和功率管電流的仿真波形。電源電壓為5V,C1、C2電容值為1pF,時鐘周期為40s,NHV和MP6寬長比的比值為300,功率管的并聯(lián)個數(shù)為1103。采用0.6m30VBCD工藝,在典型條件下,用HSPICE對整體電路仿真。由波形可以看出,在1ms內(nèi),負(fù)載輸出電壓逐漸上升,功率管電流沒有過沖,啟動時間為1.7ms。
3ms后,功率管完全開啟,為負(fù)載提供電源。
圖5 啟動時功率管電流和負(fù)載輸出電壓
表1為限流電路工作時功率管的平均柵電壓和平均電流。圖6為USB開關(guān)啟動8ms后負(fù)載短路到恢復(fù)正常的仿真結(jié)果。USB開關(guān)在負(fù)載正常情況下啟動,8ms后負(fù)載短路,負(fù)載電流過沖到3.1A。當(dāng)過流保護(hù)電路工作后,過流保護(hù)電路將電流限制在0.3A,保護(hù)了USB端口。16ms后,負(fù)載恢復(fù)正常,電源開關(guān)重新啟動。
表1 限流時功率管平均柵電壓和平均電流
圖6 USB開關(guān)在啟動、限流和恢復(fù)正常過程中,電荷泵輸出電壓、負(fù)載輸出電壓和功率管電流的仿真波形
6 結(jié)論
本文設(shè)計(jì)了一種滿足USB規(guī)范的電源開關(guān)。
一種結(jié)構(gòu)簡單的自舉電荷泵為N型功率管提供柵驅(qū)動電壓,以降低開關(guān)的導(dǎo)通損耗。精確的限流電路針對過載和短路故障,對輸入電源提供保護(hù)。仿真結(jié)果表明,在負(fù)載短路瞬間,限流電路能夠有效地減小過沖電流,并能把電流限制在0.3A,達(dá)到保護(hù)USB端口的目的。
評論