<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > Linux啟動(dòng)時(shí)間的極限優(yōu)化

          Linux啟動(dòng)時(shí)間的極限優(yōu)化

          作者: 時(shí)間:2016-10-08 來(lái)源:網(wǎng)絡(luò) 收藏

          在上次完成嵌入式應(yīng)用的Linux裁減后,Linux的啟動(dòng)時(shí)間仍需要 7s 左右,雖然勉強(qiáng)可以接受,但仍然沒(méi)有達(dá)到我個(gè)人所追求的目標(biāo)——2s 以內(nèi)。況且,在實(shí)際的商用環(huán)境中,設(shè)備可靠性的要求可是“5個(gè)9”(99.999%,即OOS時(shí)間低于5分鐘/年),這就意味著每減少一秒鐘Linux啟動(dòng)(設(shè)備復(fù)位)時(shí)間,對(duì)可靠性都是一個(gè)明顯的提升。

          本文引用地址:http://www.ex-cimer.com/article/201610/305946.htm

          言歸正傳,如何著手對(duì)Linux的啟動(dòng)時(shí)間進(jìn)行優(yōu)化呢?

          CELF(The Consumer Electronics Linux Forum)論壇為我們指引了一個(gè)方向。

          (1)首先是對(duì)Linux啟動(dòng)過(guò)程的跟蹤和分析,生成詳細(xì)的啟動(dòng)時(shí)間報(bào)告。

          較為簡(jiǎn)單可行的方式是通過(guò)PrintkTime功能為啟動(dòng)過(guò)程的所有內(nèi)核信息增加時(shí)間戳,便于匯總分析。PrintkTime最早為CELF所提供的一個(gè)內(nèi)核補(bǔ)丁,在后來(lái)的Kernel 2.6.11版本中正式納入標(biāo)準(zhǔn)內(nèi)核。所以大家可能在新版本的內(nèi)核中直接啟用該功能。如果你的Linux內(nèi)核因?yàn)槟承┰虿荒芨聻?.6.11之后的版本,那么可以參考CELF提供的方法修改或直接下載它們提供的補(bǔ)?。簂inuxforum.org/CelfPubWiki>http://tree.celinuxforum.org/CelfPubWiki /PrintkTimes

          開(kāi)啟PrintkTime功能的方法很簡(jiǎn)單,只需在內(nèi)核啟動(dòng)參數(shù)中增加“time”即可。當(dāng)然,你也可以選擇在編譯內(nèi)核時(shí)直接指定“Kernel hacking”中的“Show timing information on printks”來(lái)強(qiáng)制每次啟動(dòng)均為內(nèi)核信息增加時(shí)間戳。這一種方式還有另一個(gè)好處:你可以得到內(nèi)核在解析啟動(dòng)參數(shù)前所有信息的時(shí)間。因此,我選擇后一種方式。

          當(dāng)完成上述配置后,重新啟動(dòng)Linux,然后通過(guò)以下命令將內(nèi)核啟動(dòng)信息輸出到文件:

          dmesg -s 131072 >ktime

          然后利用一個(gè)腳本“show_delta”(位于Linux源碼的scripts文件夾下)將上述輸出的文件轉(zhuǎn)換為時(shí)間增量顯示格式:

          /usr/src/linux-x.xx.xx/scripts/show_delta ktime >dtime

          這樣,你就得到了一份關(guān)于Linux啟動(dòng)時(shí)間消耗的詳細(xì)報(bào)告。

          (2)然后,我們就來(lái)通過(guò)這份報(bào)告,找出啟動(dòng)中相對(duì)耗時(shí)的過(guò)程。

          必須明確一點(diǎn):報(bào)告中的時(shí)間增量和內(nèi)核信息之間沒(méi)有必然的對(duì)應(yīng)關(guān)系,真正的時(shí)間消耗必須從內(nèi)核源碼入手分析。

          這一點(diǎn)對(duì)于稍微熟悉編程的朋友來(lái)說(shuō)都不難理解,因?yàn)闀r(shí)間增量只是兩次調(diào)用printk之間的時(shí)間差值。通常來(lái)說(shuō),內(nèi)核啟動(dòng)過(guò)程中在完成一些耗時(shí)的任務(wù),如創(chuàng)建hash索引、probe硬件設(shè)備等操作后會(huì)通過(guò)printk將結(jié)果打印出來(lái),這種情況下,時(shí)間增量往往反映的是信息對(duì)應(yīng)過(guò)程的耗時(shí);但有些時(shí)候,內(nèi)核是在調(diào)用printk輸出信息后才開(kāi)始相應(yīng)的過(guò)程,那么報(bào)告中內(nèi)核信息相應(yīng)過(guò)程的時(shí)間消耗對(duì)應(yīng)的是其下一行的時(shí)間增量;還有一些時(shí)候,時(shí)間消耗在了兩次內(nèi)核信息輸出之間的某個(gè)不確定的時(shí)段,這樣時(shí)間增量可能就完全無(wú)法通過(guò)內(nèi)核信息反應(yīng)出來(lái)了。

          所以,為了準(zhǔn)確判斷真正的時(shí)間消耗,我們需要結(jié)合內(nèi)核源碼進(jìn)行分析。必要的時(shí)候,例如上述第三種情形下,還得自己在源碼中插入printk打印,以進(jìn)一步確定實(shí)際的時(shí)間消耗過(guò)程。

          以下是我上次裁減后Linux內(nèi)核的啟動(dòng)分析:

          內(nèi)核啟動(dòng)總時(shí)間: 6.188s

          關(guān)鍵的耗時(shí)部分:

          1) 0.652s - Timer,IRQ,Cache,Mem Pages等核心部分的初始化

          2) 0.611s - 內(nèi)核與RTC時(shí)鐘同步

          3) 0.328s - 計(jì)算Calibrating Delay(4個(gè)CPU核心的總消耗)

          4) 0.144s - 校準(zhǔn)APIC時(shí)鐘

          5) 0.312s - 校準(zhǔn)Migration Cost

          6) 3.520s - Intel E1000網(wǎng)卡初始化

          下面,將針對(duì)上述各部分進(jìn)行逐一分析和化解。

          (3)接下來(lái),進(jìn)行具體的分項(xiàng)優(yōu)化。

          CELF已經(jīng)提出了一整套針對(duì)消費(fèi)類電子產(chǎn)品所使用的嵌入式Linux的啟動(dòng)優(yōu)化方案,但是由于面向不同應(yīng)用,所以我們只能部分借鑒他們的經(jīng)驗(yàn),針對(duì)自己面對(duì)的問(wèn)題作出具體的分析和嘗試。

          內(nèi)核關(guān)鍵部分(Timer、IRQ、Cache、Mem Pages……)的初始化目前暫時(shí)沒(méi)有比較可靠和可行的優(yōu)化方案,所以暫不考慮。

          對(duì)于上面分析結(jié)果中的 2、3 兩項(xiàng),CELF已有專項(xiàng)的優(yōu)化方案:“RTCNoSync”和“PresetLPJ”。

          前者通過(guò)屏蔽啟動(dòng)過(guò)程中所進(jìn)行的RTC時(shí)鐘同步或者將這一過(guò)程放到啟動(dòng)后進(jìn)行(視具體應(yīng)用對(duì)時(shí)鐘精度的需求而定),實(shí)現(xiàn)起來(lái)比較容易,但需要為內(nèi)核打補(bǔ)丁。似乎CELF目前的工作僅僅是去掉了該過(guò)程,而沒(méi)有實(shí)現(xiàn)所提到的“延后”處理RTC時(shí)鐘的同步??紤]到這個(gè)原因,我的方案中暫時(shí)沒(méi)有引入這一優(yōu)化(畢竟它所帶來(lái)的時(shí)間漂移已經(jīng)達(dá)到了“秒”級(jí)),繼續(xù)關(guān)注中。

          后者是通過(guò)在啟動(dòng)參數(shù)中強(qiáng)制指定LPJ值而跳過(guò)實(shí)際的計(jì)算過(guò)程,這是基于LPJ值在硬件條件不變的情況下不會(huì)變化的考慮。所以在正常啟動(dòng)后記錄下內(nèi)核信息中的“Calibrating Delay”數(shù)值后就可以在啟動(dòng)參數(shù)中以下面的形式強(qiáng)制指定LPJ值了:

          lpj=9600700

          上面分析結(jié)果中的 4、5 兩項(xiàng)都是SMP初始化的一部分,因此不在CELF研究的范疇(或許將來(lái)會(huì)有采用多核的MP4出現(xiàn)?……),只能自力更生了。研究了一下SMP的初始化代碼,發(fā)現(xiàn)“Migration Cost”其實(shí)也可以像“Calibrating Delay”采用預(yù)置的方式跳過(guò)校準(zhǔn)時(shí)間。方法類似,最后在內(nèi)核啟動(dòng)參數(shù)中增加:

          migration_cost=4000,4000

          而Intel的網(wǎng)卡驅(qū)動(dòng)初始化優(yōu)化起來(lái)就比較麻煩了,雖然也是開(kāi)源,但讀硬件驅(qū)動(dòng)完全不比讀一般的C代碼,況且建立在如此膚淺理解基礎(chǔ)上的“優(yōu)化”修改也實(shí)在難保萬(wàn)全。基于可靠性的考慮,我最終在兩次嘗試均告失敗后放棄了這一條路。那么,換一個(gè)思維角度,可以借鑒CELF在“ParallelRCScripts”方案中的“并行初始化”思想,將網(wǎng)卡驅(qū)動(dòng)獨(dú)立編譯為模塊,放在初始化腳本中與其它模塊和應(yīng)用同步加載,從而消除Probe阻塞對(duì)啟動(dòng)時(shí)間的影響??紤]到應(yīng)用初始化也可能使用到網(wǎng)絡(luò),而在我們的實(shí)際硬件環(huán)境中,只有eth0是供應(yīng)用使用的,因此需要將第一個(gè)網(wǎng)口初始化的0.3s時(shí)間計(jì)算在內(nèi)。

          除了在我的方案中所遇到的上述各優(yōu)化點(diǎn),CELF還提出了一些你可能會(huì)感興趣的有特定針對(duì)性的專項(xiàng)優(yōu)化,如:


          上一頁(yè) 1 2 下一頁(yè)

          關(guān)鍵詞:

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();