<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > 什么是微控制器

          什么是微控制器

          作者: 時間:2016-10-15 來源:網(wǎng)絡 收藏

          是將微型計算機的主要部分集成在一個芯片上的單芯片微型計算機。誕生于20世紀70年代中期,經(jīng)過20多年的發(fā)展,其成本越來越低,而性能越來越強大,這使其應用已經(jīng)無處不在,遍及各個領域。例如電機控制、條碼閱讀器/掃描器、消費類電子、游戲設備、電話、HVAC、樓宇安全與門禁控制、工業(yè)控制與自動化和白色家電(洗衣機、微波爐)等。

          本文引用地址:http://www.ex-cimer.com/article/201610/307371.htm

          可從不同方面進行分類:根據(jù)數(shù)據(jù)總線寬度可分為8位、16位和32位機;根據(jù)存儲器結構可分為Harvard結構和Von Neumann結構;根據(jù)內(nèi)嵌程序存儲器的類別可分為OTP、掩膜、EPROM/EEPROM和閃存Flash;根據(jù)指令結構又可分為CISC(Complex Instruction Set Computer)和RISC(Reduced Instruction Set Computer)微控制器。本文將結合不同指令結構微控制器的發(fā)展及其特性進行論述。

          1 微控制器的發(fā)展歷程

          Intel公司作為最早推出微處理器的公司,同樣也是最早推出微控制器的公司。繼1976年推出MCS-48后,又于1980年推出了MCS-51,為發(fā)展具有良好兼容性的新一代微控制器奠定了良好的基礎。在8051技術實現(xiàn)開放后,Philips、Atmel、Dallas和Siemens等公司紛紛推出了基于80C5l內(nèi)核(805l的CMC)S版本)的微控制器。這些各具特色的產(chǎn)品能夠滿足大量嵌入式應用需求。基于80C51內(nèi)核的微控制器并沒有停止發(fā)展的腳步,例如現(xiàn)在Maxim/Dallas公司提供的DS89C430系列微控制器,其單周期指令速度已經(jīng)提高到了805l的12倍。

          基于CISC架構的微控制器除了80C51外,還包括Motorola提供的68HC系列微控制器,這也是大量應用的微控制器系列。

          基于RISC架構的微控制器則包括Microchip的PIC系列8位微控制器等。在16位RISC架構的微控制器中,Maxim公司推出的MAXQ系列微控制器以其高性能、低功耗和卓越的代碼執(zhí)行效率,成為許多需要高精度混合信號處理以及便攜式系統(tǒng)和電池供電系統(tǒng)的理想選擇。

          2 基于8051內(nèi)核的COSC微控制器

          迄今為止,MCS-51已成為8位機中運行最慢的系列?,F(xiàn)在Dallas推出的DS89C430系列產(chǎn)品在保持與80C51引腳和指令集兼容的基礎上,每個機器周期僅為一個時鐘,實現(xiàn)了8051系列的最高吞吐率。一般而言,對于現(xiàn)有的基于8051的應用軟件可以直接寫入DS89C430而無需進行更改。除此之外,DS89C430還在許多其他方面引入了新的功能,從而為具體應用提供了更多靈活性。下面介紹DS89C430不同于8051的功能和特點。

          2.1 片內(nèi)程序存儲器及應用

          片內(nèi)程序存儲器邏輯上分為成對的8 KB、16 KB或32 KB閃存單元,以支持在應用編程。這允許器件在應用軟件的控制下修改程序存儲器,應用系統(tǒng)能夠在執(zhí)行其主要功能的情況下,完成在線軟件升級。DS89C430集成了64 B加密陣列,允許用戶以加密形式查看數(shù)據(jù),進行程序代碼校驗。

          器件支持通過RS-232串口實現(xiàn)在系統(tǒng)編程。在系統(tǒng)編程通過將器件的一個或多個外部引腳設置為某特定狀態(tài)來激活引導加載程序。器件啟動后,開始執(zhí)行駐留于器件內(nèi)部專用ROM的加載程序。一旦收到一個回車符號,串口就執(zhí)行自動波特率功能,并與主機的波特率同步。如圖1所示是在系統(tǒng)編程的物理連接.簡單的引導加載程序接口允許使用幾種方法來實現(xiàn)PC機與目標微控制

          器間的通信。最簡單的方法是使用Dallas的微控制器工具包(MTK)軟件.它具有高度前端特征,簡化了目標配置,上傳、下載代碼以及特殊功能配置等任務操作。

          2.2 雙數(shù)據(jù)指針

          8051微控制器是通過MOVX指令來訪問片外數(shù)據(jù)空間的,用MOVX@DPTR指令可訪問整個64 KB的片外數(shù)據(jù)存儲器。傳統(tǒng)的8051只有一個數(shù)據(jù)指針DPTR,要將數(shù)據(jù)從一個地址移到另一個地址非常麻煩。DS89C430則具備雙數(shù)據(jù)指針DPTR0和DPTRl,因此軟件可以使用一個指針裝載源地址,另一個指針裝載目的地址。DPTR0的SFR地址與805l相同(82H和83H),因此使用該指針時源代碼無需更改,DPTRl位于84H和85H地址。所有與數(shù)據(jù)指針相關的操作都使用活動數(shù)據(jù)指針,活動指針通過控制位SEL選擇。每個指針還各有

          一個控制位,決定INCDPTR操作是遞增還是遞減數(shù)據(jù)指針值。

          在拷貝數(shù)據(jù)塊時,與使用單數(shù)據(jù)指針相比,雙數(shù)據(jù)指針可以節(jié)省大量代碼。用戶通過轉換SEL位來轉換活動數(shù)據(jù)指針,其中一種方法可通過執(zhí)行INCDPS指令來實現(xiàn)。對于這些大的數(shù)據(jù)塊拷貝,用戶必須頻繁執(zhí)行該指令來轉換DPTR0和DPTRl。為了在節(jié)省代碼的同時提高運行速度和效率,DS89C430又包含了一個轉換選擇位 (TSL),來確定執(zhí)行MOVX指令時硬件是否自動轉換SEL位,這樣就可以省去INCDPS指令并進一步提高運行速度。

          大的數(shù)據(jù)塊拷貝需要源指針和目的指針逐字節(jié)尋址數(shù)據(jù)空間,傳統(tǒng)的方法是通過使用INCDPTR指令來增加數(shù)據(jù)指針。為了進一步提高數(shù)據(jù)傳輸速率,引入了自動增減控制位(AID),用以確定執(zhí)行MOVX指令時,是否會自動增減活動指針值。表l為各種情況下DS80C320和DS89C430進行64B數(shù)據(jù)塊傳輸時的速度比較。從表l中可以看出,采用雙數(shù)據(jù)指針后運行速度得到極大提高。

          2.3 電源管理和時鐘分頻控制

          CMOS電路的功耗主要由兩部分組成:連續(xù)漏電流造成的靜態(tài)功耗以及對負載電容進行充放電所需的轉換開關電流造成的動態(tài)功耗。其中,動態(tài)功耗是總體功耗的主要部分,該功耗(PD)可以通過負載電容(CL)、電源電壓(VDD)和工作頻率(f)進行計算,即:PD=CL×VDD2×f。

          對于某具體應用,電容和電源電壓相對固定,而處理器的處理速度在不同時刻可能是不同的,因此工作頻率可以根據(jù)不同需要進行調(diào)整,從而在不影響系統(tǒng)性能的前提下達到降低功耗的要求。

          DS89C430支持三種低功耗節(jié)電模式。

          ①系統(tǒng)時鐘分頻控制:允許微控制器使用內(nèi)部分頻的時鐘源繼續(xù)工作,以節(jié)省功耗。通過軟件設置時鐘分頻控制位,設置工作速率為每機器周期1024個振蕩器周期.

          ②空閑模式:以靜態(tài)方式保持程序計數(shù)器,并掛起處理器。在此模式中,處理器不取指令也不執(zhí)行指令。除了外圍接口時鐘保持為活動狀態(tài)以及定時器、看門狗、串口和電源監(jiān)視功能仍然工作外,所有的資源均保存。處理器能夠使用允許的中斷源退出空閑模式。

          ③停機模式:禁止處理器內(nèi)部的所有電路。所有片內(nèi)時鐘、定時器和串口通信都停止運行,處理器不執(zhí)行任何指令。通過使用六個外部中斷中的任何一個,處理器都能夠退出停機模式。

          3 基于RISC架構的微控制器

          MAXQ2000微控制器是Maxino/Dallas公司推出的一款基于RIS(:架構的16位微控制器。理解這款微控制器的一些結構特點,可以使我們更好地理解RISO結構微控制器的最新發(fā)展趨勢和技術特點,從而為我們構建新型系統(tǒng)提供更加理想的選擇。MAXQ2000的指令讀取和執(zhí)行操作在一個周期內(nèi)完成,而沒有流水線操作,這是因為指令既包含了操作碼也包括了數(shù)據(jù)。字母Q表示這款微控制器的一個重要特點便是“安靜”,MAXQ架構通過智能化的時鐘管理來降低噪聲.這意味著MAXQ只向那些需要使用時鐘的電路提供時鐘,這樣既降低了功耗,又為模擬電路的整合提供了一個最安靜的環(huán)境。它包含液晶顯示(I.CD)接口,最多可以驅動100或132段(兩種版本)。這款微控制器的功耗指標和MIPS/MHz代碼效率方面都在同類微控制器當中遙遙領先.下面介紹MAXQ2000的主要特性。

          3.1 指令集

          指令集由23條對寄存器和存儲器進行操作的固定長度的16位指令組成。指令集高度正交,允許算術和邏輯操作使用累加器和任何寄存器。特殊功能寄存器控制外圍設備,并細分成寄存器模塊。產(chǎn)品系列的結構是模塊化的,因此新的器件和模塊能夠繼續(xù)使用為現(xiàn)有產(chǎn)品開發(fā)的代碼.該結構是基于傳送觸發(fā)的,這意味著對某一寄存器位置的讀或寫會產(chǎn)生額外作用。這些額外作用構成了由匯編器定義的高層操作碼的基礎,如ADDC、OR和JUMP等。

          3.2 存儲器配置

          MAXQ2000具有32KB閃存、lKBRAM、4KB的內(nèi)部ROM存儲器塊和16級堆棧存儲器。存儲器缺省配置成Harvard結構,程序和數(shù)據(jù)存儲器具有獨立的地址空間,還可以使能為Vorl Ncumann存儲器配置模式,即將固定用途ROM、代碼和數(shù)據(jù)存儲器放置到一個連續(xù)的存儲器映射中.這適合于需要進行動態(tài)程序修改或特殊存儲器配置的應用。閃存程序存儲器可以通過16字密鑰進行密碼保護,從而防止未授權者訪問程序存儲器。同時,還具有3個數(shù)據(jù)指針,支持高效快速地處理數(shù)據(jù).

          固定用途ROM由可以在應用軟件中進行調(diào)用的子程序組成(缺省起始地址為8000H).包括:通過JTAG或UART接口進行在系統(tǒng)編程(引導加載程序);在電路調(diào)試程序;測試程序(內(nèi)部存儲器測試,存儲器加載等);用于在應用閃存編程和快速查找表的用戶可調(diào)用程序。無論以任何方式復位,都從固定用途ROM開始運行程序。R。M軟件決定程序立刻跳轉到8000H位置、用戶應用代碼的起始位置、還是上面提到的某特定用途子程序.用戶可訪問固定用途ROM中的程序,并且可以由應用軟件調(diào)用這些程序。

          3.3 寄存器組

          器件的大多數(shù)功能是由寄存器組來控制的。這些寄存器為存儲器操作提供工作空間,并配置和尋址器件上的外設寄存器。寄存器分成兩大類:系統(tǒng)寄存器和外設寄存器.公共寄存器組也稱作系統(tǒng)寄存器,包括ALU、累加器寄存器、數(shù)據(jù)指針、堆棧指針等。外設寄存器定義了可能包含在基于MAXQ架構的不同產(chǎn)品中的附加功能.

          3.4 電源管理

          MAXQ2000同樣提供了先進的電源管理功能,根據(jù)系統(tǒng)不同時刻的不同性能需求,可以動態(tài)設置處理速度,從而大大降低功耗。通過軟件選擇分頻功能,來選擇系統(tǒng)時鐘周期是l、2、4或者8個振藹周期。為進一步降低功耗,還有另外三種低功耗模式,256分頻、32 kH。和停機模式。

          3.5 中 斷

          提供多個中斷源,可對內(nèi)部和外部事件快速響應。MAXQ結構采用了單一中斷向量(IV)和單一中斷服務程序(ISR)設計。必須在用戶中斷程序內(nèi)清除中斷標志,以避免由同一中斷源引發(fā)重復中斷。當檢測到使能的中斷時,軟件跳轉到一個用戶可編程的中斷向量位置。

          一旦軟件控制權轉移到ISR,可以使用中斷識別寄存器(IIR)來判定中斷源是系統(tǒng)寄存器還是外設寄存器。然后,就可以查詢特定模塊以確定具體中斷源,并采取相應的操作。由于中斷源是由用戶軟件識別的,因此用戶可以為每種應用確立一個獨特的中斷優(yōu)先級方案。

          3.6 高速硬件乘法器

          集成的硬件乘法器模塊執(zhí)行高速乘法、乘方和累加操作,并能在一個周期內(nèi)完成一個16位×16位乘法和累加操作。硬件乘法器由2個]6位并行加載操作數(shù)寄存器(MA,MB)和1個累加器組成。加載寄存器能夠自動啟動操作,從而節(jié)省了重復計算的時間。硬件乘法器的累加功能是數(shù)字濾波、信號處理以及PII)控制系統(tǒng)中的一個基奉單元,這使得MAXQ2000可以勝任需要大量數(shù)學運算的應用。

          4 結 論

          通過以上兩種基于CISC.和RISC架構的微控制器的對比分析,會發(fā)現(xiàn)許多共同的特性,如安全特性、外圍設備、電源管理和在系統(tǒng)編程等。顯然.它們都是適應具體應用的共性要求而增加的功能。兩者最大的不同是指令結構的差異。MCS一5l有50條基本指令,若累計各種不同尋址方式,指令共計lll條,對應的機器指令有單字節(jié)、雙字節(jié)和三字節(jié)指令~68H(:05有62條基本指令,加上多種尋址方式,最終指令達210條,也分為單字節(jié)、雙字節(jié)和三字節(jié)指令。比較而言,RIS(:微控制器的所有指令是由一些簡單、等長度的指令構成.精簡指令使微控制器的線路可以盡量優(yōu)化,硬件結構更加簡單,從而可以實現(xiàn)較低的成本和功耗,當然完成相同的工作可能需要更多的指令。所以,二者取舍之間沒有絕對優(yōu)勢,只能說根據(jù)應用的不同需求和側重來進行選擇。

          微處理器是20世紀偉大的技術創(chuàng)新之一,由此而衍生的微控制器將微處理器和外設集于一身,為多種應用開創(chuàng)了新局面,并將繼續(xù)發(fā)揮不可替代的作用。

          微處理器體系結構

          哈佛結構和馮·諾伊曼結構

          哈佛結構是一種將程序指令存儲和數(shù)據(jù)存儲分開的存儲器結構。中央處理器首先到程序指令存儲器中讀取程序指令內(nèi)容,解碼后得到數(shù)據(jù)地址,再到相應的數(shù)據(jù)存儲器中讀取數(shù)據(jù),并進行下一步的操作(通常是執(zhí)行)。程序指令存儲和數(shù)據(jù)存儲分開,可以使指令和數(shù)據(jù)有不同的數(shù)據(jù)寬度,如Microchip公司的PIC16芯片的程序指令是14位寬度,而數(shù)據(jù)是8位寬度。

          哈佛結構的微處理器通常具有較高的執(zhí)行效率。其程序指令和數(shù)據(jù)指令分開組織和存儲的,執(zhí)行時可以預先讀取下一條指令。目前使用哈佛結構的中央處理器和微控制器有很多,除了上面提到的Microchip公司的PIC系列芯片,還有摩托羅拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的AVR系列和安謀公司的ARM9、ARM10和ARM11,51單片機也屬于哈佛結構。

          馮·諾伊曼結構也稱普林斯頓結構,是一種將程序指令存儲器和數(shù)據(jù)存儲器合并在一起的存儲器結構。程序指令存儲地址和數(shù)據(jù)存儲地址指向同一個存儲器的不同物理位置,因此程序指令和數(shù)據(jù)的寬度相同,如英特爾公司的8086中央處理器的程序指令和數(shù)據(jù)都是16位寬。

          目前使用馮?諾伊曼結構的中央處理器和微控制器有很多。除了上面提到的英特爾公司的8086,英特爾公司的其他中央處理器、安謀公司的ARM7、MIPS公司的MIPS處理器也采用了馮諾·伊曼結構。



          關鍵詞: 微控制器

          評論


          相關推薦

          技術專區(qū)

          關閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();