<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > ARM Linux內(nèi)核啟動2

          ARM Linux內(nèi)核啟動2

          作者: 時間:2016-11-09 來源:網(wǎng)絡(luò) 收藏
          上一篇ARM Linux內(nèi)核啟動(1)的銜接。

          接著上一篇說,看下面源碼:

          本文引用地址:http://www.ex-cimer.com/article/201611/317996.htm

          /*
          * Setup the initial page tables. We only setup the barest
          * amount which are required to get the kernel running, which
          * generally means mapping in the kernel code.只創(chuàng)建內(nèi)核代碼的映射
          *
          * r5 = physical address of start of RAM
          * r6 = physical IO address
          * r7 = byte offset into page tables for IO
          * r8 = page table flags
          */
          __create_page_tables:
          pgtblr4, r5@ page table address頁表地址


          /*
          * Clear the 16K level 1 swapper page table
          */
          movr0, r4
          movr3, #0
          addr2, r0, #0x4000
          1:strr3, [r0], #4
          strr3, [r0], #4
          strr3, [r0], #4
          strr3, [r0], #4
          teqr0, r2
          bne1b

          /*
          * Create identity mapping for first MB of kernel to
          * cater for the MMU enable. This identity mapping
          * will be removed by paging_init(). We use our current program
          * counter to determine corresponding section base address.
          */現(xiàn)在只創(chuàng)建開始1M的映射,其他外設(shè)寄存器空間的映射由paging_init()創(chuàng)建
          movr2, pc, lsr #20@ start of kernel section
          addr3, r8, r2, lsl #20@ flags + kernel base
          strr3, [r4, r2, lsl #2]@ identity mapping


          /*
          * Now setup the pagetables for our kernel direct
          * mapped region. We round TEXTADDR down to the
          * nearest megabyte boundary. It is assumed that
          * the kernel fits within 4 contigous 1MB sections.
          */現(xiàn)在為內(nèi)核直接映射區(qū)建立頁表。我們大概將TEXTADDR降到最近的M區(qū)域
          addr0, r4, #(TEXTADDR & 0xff000000) >> 18@ start of kernel
          strr3, [r0, #(TEXTADDR & 0x00f00000) >> 18]!
          addr3, r3, #1 << 20
          strr3, [r0, #4]!@ KERNEL + 1MB
          addr3, r3, #1 << 20
          strr3, [r0, #4]!@ KERNEL + 2MB
          addr3, r3, #1 << 20
          strr3, [r0, #4]@ KERNEL + 3MB

          /*
          * Then map first 1MB of ram in case it contains our boot params.
          */
          addr0, r4, #VIRT_OFFSET >> 18
          addr2, r5, r8
          strr2, [r0]

          linux內(nèi)核中3GB以上的地址空間為內(nèi)核空間,所以需要把內(nèi)核所在的物理空間地址映射到3GB以上。這里只映射了4MB。注意第一節(jié)進行了兩次映射,一個和物理地址相同映射,另一個映射到3GB以上。

          ......這中間還有一段代碼,就不分析了,都是有關(guān)調(diào)試的。

          /*
          * Read processor ID register (CP#15, CR0), and look up in the linker-built
          * supported processor list. Note that we cant use the absolute addresses
          * for the __proc_info lists since we arent running with the MMU on
          * (and therefore, we are not in the correct address space). We have to
          * calculate the offset.
          *
          * Returns:
          *r5, r6, r7 corrupted
          *r8 = page table flags
          *r9 = processor ID
          *r10 = pointer to processor structure
          */
          __lookup_processor_type:
          adrr5, 2f
          ldmiar5, {r7, r9, r10}
          subr5, r5, r10@ convert addresses
          addr7, r7, r5@ to our address space
          addr10, r9, r5
          mrcp15, 0, r9, c0, c0@ get processor id
          1:ldmiar10, {r5, r6, r8}@ value, mask, mmuflags
          andr6, r6, r9@ mask wanted bits
          teqr5, r6
          moveqpc, lr
          addr10, r10, #PROC_INFO_SZ@ sizeof(proc_info_list)
          cmpr10, r7
          blt1b
          movr10, #0@ unknown processor
          movpc, lr


          /*
          * Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for
          * more information about the __proc_info and __arch_info structures.
          */

          內(nèi)核中定義的處理器信息和平臺信息,在連接文件vmlinux.lds.S (archarmkernel)中有如下定義:

          vmlinux.lds.S (archarmkernel)

          __proc_info_begin = .;
          *(.proc.info)
          __proc_info_end = .;
          __arch_info_begin = .;
          *(.arch.info)
          __arch_info_end = .;


          2:.long__proc_info_end
          .long__proc_info_begin
          .long2b
          .long__arch_info_begin
          .long__arch_info_end
          這段代碼的開頭標(biāo)志,看起來是不是很熟悉,這個就是在第一篇中看到的的,不知道的話,可以回過去查看。這段代碼主要是有關(guān)處理器的查找。

          /*
          * Lookup machine architecture in the linker-build list of architectures.
          * Note that we cant use the absolute addresses for the __arch_info
          * lists since we arent running with the MMU on (and therefore, we are
          * not in the correct address space). We have to calculate the offset.
          *不能使用絕對地址
          * r1 = machine architecture number
          * Returns:
          * r2, r3, r4 corrupted
          * r5 = physical start address of RAM
          * r6 = physical address of IO
          * r7 = byte offset into page tables for IO
          */
          __lookup_architecture_type:
          adrr4, 2b
          ldmiar4, {r2, r3, r5, r6, r7}@ throw away r2, r3
          subr5, r4, r5@ convert addresses
          addr4, r6, r5@ to our address space
          addr7, r7, r5
          1:ldrr5, [r4]@ get machine type
          teqr5, r1@ matches loader number?
          beq2f@ found
          addr4, r4, #SIZEOF_MACHINE_DESC@ next machine_desc
          cmpr4, r7
          blt1b
          movr7, #0@ unknown architecture
          movpc, lr
          2:ldmibr4, {r5, r6, r7}@ found, get results
          movpc, lr

          這段代碼也和上面的一樣。這段完成的工作主要是判斷內(nèi)核對這個平臺的支持。那平臺信息在那里定義呢?

          MACHINE_START (KEV7A400, "Sharp KEV7a400")
          MAINTAINER ("Marc Singer")
          BOOT_MEM (0xc0000000, 0x80000000, io_p2v (0x80000000))
          BOOT_PARAMS (0xc0000100)
          MAPIO (kev7a400_map_io)
          INITIRQ (lh7a400_init_irq)
          .timer= &lh7a40x_timer,
          MACHINE_END

          主要是通過MACHINE_START宏,

          /*
          * Set of macros to define architecture features. This is built into
          * a table by the linker.
          */
          #define MACHINE_START(_type,_name)
          const struct machine_desc __mach_desc_##_type
          __attribute__((__section__(".arch.info"))) = {
          .nr= MACH_TYPE_##_type,
          .name= _name,

          當(dāng)想要添加新的平臺是,需修改Mach-types (archarmtools)這個文件,因為內(nèi)核在編譯時Makefile腳本會根據(jù)

          Mach-types (archarmtools)文件生成Mach-types.h (includeasm-arm)文件。



          關(guān)鍵詞: ARMLinux內(nèi)核啟

          評論


          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();