在網(wǎng)上轉(zhuǎn)的,收集起來,下次要查看的時候方便點。
本文引用地址:
http://www.ex-cimer.com/article/201611/318879.htms3c2440啟動文件分析
s3c2440啟動文件分析
;=========================================
; [url=URL]NAME[/url]: 2440INIT.S
; DESC: C start up codes
; Configure memory, ISR ,stacks
; Initialize C-variables
; HISTORY:
; 2002.02.25:kwtark: ver 0.0
; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode
; 2003.03.14:DonGo: Modified for 2440.
;=========================================
GET option.inc
GET memcfg.inc
GET 2440addr.inc
BIT_SELFREFRESH EQU (1<<22) ;bit[22]=1,others=0(把1左移22位)
;Pre-defined constants ;系統(tǒng)的工作模式設(shè)定
USERMODE EQU 0x10
FIQMODE EQU 0x11
IRQMODE EQU 0x12
SVCMODE EQU 0x13
ABORTMODE EQU 0x17
UNDEFMODE EQU 0x1b
MODEMASK EQU 0x1f
NOINT EQU 0xc0
;The location of stacks ;系統(tǒng)的堆棧空間設(shè)定
UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~
SVCStack EQU (_STACK_BASEADDRESS-0x2800) ;0x33ff5800 ~
UndefStack EQU (_STACK_BASEADDRESS-0x2400) ;0x33ff5c00 ~
AbortStack EQU (_STACK_BASEADDRESS-0x2000) ;0x33ff6000 ~
IRQStack EQU (_STACK_BASEADDRESS-0x1000) ;0x33ff7000 ~
FIQStack EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~
;arm處理器有兩種工作狀態(tài) 1.arm:32位 這種工作狀態(tài)下執(zhí)行字對準(zhǔn)的arm指令 2.Thumb:16位這種工作狀
;態(tài)執(zhí)行半字對準(zhǔn)的Thumb指令
;因為處理器分為16位 32位兩種工作狀態(tài) 程序的編譯器也是分16位和32兩種編譯方式 所以下面的程序用
;于根據(jù)處理器工作狀態(tài)確定編譯器編譯方式
;code16偽指令指示匯編編譯器后面的指令為16位的thumb指令
;code32偽指令指示匯編編譯器后面的指令為32位的arm指令
;這段是為了統(tǒng)一目前的處理器工作狀態(tài)和軟件編譯方式(16位編譯環(huán)境使用tasm.exe編譯
;Check if tasm.exe(armasm -16 ...@ADS 1.0) is used.
GBLL THUMBCODE ;定義一個全局變量
[ {CONFIG} = 16 ;if config==16 這里表示你的目前處于領(lǐng)先地16位編譯方式
THUMBCODE SETL {TRUE} ;設(shè)置THUMBCODE 為 true表示告訴系統(tǒng)當(dāng)前想用thumb,但實際啟動時不行,只能啟動后再跳
; ][|]表示if else endif
CODE32 ;啟動時強制使用32位編譯模式
|
THUMBCODE SETL {FALSE} ;如果系統(tǒng)要求是ARM指令,則直接設(shè)置THUMBCODE 為 false 說明當(dāng)前的是32位編譯模式
]
MACRO ;宏定義
MOV_PC_LR
[ THUMBCODE
bx lr
|
mov pc,lr
]
MEND
MACRO
MOVEQ_PC_LR
[ THUMBCODE
bxeq lr ;相等Z=1,則跳轉(zhuǎn)
|
moveq pc,lr
]
MEND
;注意下面這段程序是個宏定義 很多人對這段程序不理解 我再次強調(diào)這是一個宏定義 所以大家要注意了
;下面包含的HandlerXXX HANDLER HandleXXX將都被下面這段程序展開
;這段程序用于把中斷服務(wù)程序的首地址裝載到pc中,有人稱之為“加載程序”。
;本初始化程序定義了一個數(shù)據(jù)區(qū)(在文件最后),34個字空間,存放相應(yīng)中斷服務(wù)程序的首地址。每個字
;空間都有一個標(biāo)號,以Handle***命名。
;在向量中斷模式下使用“加載程序”來執(zhí)行中斷服務(wù)程序。
;這里就必須講一下向量中斷模式和非向量中斷模式的概念
;向量中斷模式是當(dāng)cpu讀取位于0x18處的IRQ中斷指令的時候,系統(tǒng)自動讀取對應(yīng)于該中斷源確定地址上的;
;指令取代0x18處的指令,通過跳轉(zhuǎn)指令系統(tǒng)就直接跳轉(zhuǎn)到對應(yīng)地址
;函數(shù)中 節(jié)省了中斷處理時間提高了中斷處理速度標(biāo) 例如 ADC中斷的向量地址為0xC0,則在0xC0處放如下
;代碼:ldr PC,=HandlerADC 當(dāng)ADC中斷產(chǎn)生的時候系統(tǒng)會
;自動跳轉(zhuǎn)到HandlerADC函數(shù)中
;非向量中斷模式處理方式是一種傳統(tǒng)的中斷處理方法,當(dāng)系統(tǒng)產(chǎn)生中斷的時候,系統(tǒng)將interrupt
;pending寄存器中對應(yīng)標(biāo)志位置位 然后跳轉(zhuǎn)到位于0x18處的統(tǒng)一中斷
;函數(shù)中 該函數(shù)通過讀取interrupt pending寄存器中對應(yīng)標(biāo)志位 來判斷中斷源 并根據(jù)優(yōu)先級關(guān)系再跳到
;對應(yīng)中斷源的處理代碼中
MACRO
$HandlerLabel HANDLER $HandleLabel
$HandlerLabel
sub sp,sp,#4 ;decrement sp(to store jump address)
stmfd sp!,{r0} ;PUSH the work register to stack(lr doest push because it return to original address)
ldr r0,=$HandleLabel;load the address of HandleXXX to r0
ldr r0,[r0] ;load the contents(service routine start address) of HandleXXX
str r0,[sp,#4] ;store the contents(ISR) of HandleXXX to stack
ldmfd sp!,{r0,pc} ;POP the work register and pc(jump to ISR)
MEND
;將$HandleLabel地址空間中的數(shù)據(jù)給PC,中斷服務(wù)程序的入口
IMPORT |Image$$RO$$Limit| ; End of ROM code (=start of ROM data)
IMPORT |Image$$RW$$Base| ; Base of RAM to initialise
IMPORT |Image$$ZI$$Base| ; Base and limit of area
IMPORT |Image$$ZI$$Limit| ; to zero initialise
IMPORT Main
;導(dǎo)入要用到的字符常量
AREA Init,CODE,READONLY
;異常中斷矢量表(每個表項占4個字節(jié)) 下面是中斷向量表 一旦系統(tǒng)運行時有中斷發(fā)生 即使移植了操作
;系統(tǒng) 如linux 處理器已經(jīng)把控制權(quán)交給了操作系統(tǒng) 一旦發(fā)生中斷 處理器還是會跳轉(zhuǎn)到從0x0開始
;中斷向量表中某個中斷表項(依據(jù)中斷類型)開始執(zhí)行
;具體中斷向量布局請參考s3c44b0 spec 例如 adc中斷向量為 0x000000c0下面對應(yīng)表中第49項位置向量地址0x0+4*(49-1)=0x000000c0
ENTRY
;板子上電和復(fù)位后 程序開始從位于0x0處開始執(zhí)行硬件剛剛上電復(fù)位后 程序從這里開始執(zhí)行跳轉(zhuǎn)到標(biāo)
;為ResetHandler處執(zhí)行
;1)The code, which converts to Big-endian, should be in little endian code.
;2)The following little endian code will be compiled in Big-Endian mode.
; The code byte order should be changed as the memory bus width.
;3)The pseudo instruction,DCD cant be used here because the linker generates error.
;條件編譯,在編譯成機器碼前就設(shè)定好
ASSERT :DEF:ENDIAN_CHANGE ;判斷ENDIAN_CHANGE是否已定義
[ ENDIAN_CHANGE ;如果已經(jīng)定義了ENDIAN_CHANGE,則判斷,here is FALSE
ASSERT :DEF:ENTRY_BUS_WIDTH ;判斷ENTRY_BUS_WIDTH是否已定義
][ ENTRY_BUS_WIDTH=32 ;如果已經(jīng)定義了ENTRY_BUS_WIDTH,則判斷是不是為32
b ChangeBigEndian ;DCD 0xea000007
]
;在bigendian中,地址為A的字單元包括字節(jié)單元A,A+1,A+2,A+3,字節(jié)單元由高位到低位為A,A+1,A+2,A+3
; 地址為A的字單元包括半字單元A,A+2,半字單元由高位到低位為A,A+2
[ ENTRY_BUS_WIDTH=16
andeq r14,r7,r0,lsl #20 ;DCD 0x0007ea00 也是b ChangeBigEndian指令,只是由于總線不一樣而取機器碼的順序不一樣
] ;先取低位->高位 上述指令是通過機器碼裝換而來的
[ ENTRY_BUS_WIDTH=8
streq r0,][r0,-r10,ror #1] ;DCD 0x070000ea 也是b ChangeBigEndian指令,只是由于總線不一樣而取機器碼的順序不一樣
]
|
b ResetHandler ;//here is the first instrument 0x00
]
b HandlerUndef ;handler for Undefined mode ;0x04
b HandlerSWI ;handler for SWI interrupt ;0x08
b HandlerPabort ;handler for PAbort ;0x0c
b HandlerDabort ;handler for DAbort ;0x10
b . ;reserved ;0x14
b HandlerIRQ ;handler for IRQ interrupt ;0x18
b HandlerFIQ ;handler for FIQ interrupt ;0x1c
;@0x20
b EnterPWDN ; Must be @0x20.
;通過設(shè)置CP15的C1的位7,設(shè)置存儲格式為Bigendian,三種總線方式
ChangeBigEndian ;//here ENTRY_BUS_WIDTH=16
;@0x24
[ ENTRY_BUS_WIDTH=32
DCD 0xee110f10 ;0xee110f10 => mrc p15,0,r0,c1,c0,0
DCD 0xe3800080 ;0xe3800080 => orr r0,r0,#0x80; //Big-endian
DCD 0xee010f10 ;0xee010f10 => mcr p15,0,r0,c1,c0,0
;對存儲器控制寄存器操作,指定內(nèi)存模式為Big-endian
;因為剛開始CPU都是按照32位總線的指令格式運行的,如果采用其他的話,CPU別不了,必須轉(zhuǎn)化
;但當(dāng)系統(tǒng)初始化好以后,則CPU能自動識別
]
[ ENTRY_BUS_WIDTH=16
DCD 0x0f10ee11
DCD 0x0080e380
DCD 0x0f10ee01
;因為采用Big-endian模式,采用16位總線時,物理地址的高位和數(shù)據(jù)的地位對應(yīng)
;所以指令的機器碼也相應(yīng)的高低對調(diào)
]
[ ENTRY_BUS_WIDTH=8
DCD 0x100f11ee
DCD 0x800080e3
DCD 0x100f01ee
]
DCD 0xffffffff ;swinv 0xffffff is similar with NOP and run well in both endian mode.
DCD 0xffffffff
DCD 0xffffffff
DCD 0xffffffff
DCD 0xffffffff
b ResetHandler
;Function for entering power down mode
; 1. SDRAM should be in self-refresh mode.
; 2. All interrupt should be maksked for SDRAM/DRAM self-refresh.
; 3. LCD controller should be disabled for SDRAM/DRAM self-refresh.
; 4. The I-cache may have to be turned on.
; 5. The location of the following code may have not to be changed.
;void EnterPWDN(int CLKCON);
EnterPWDN
mov r2,r0 ;r2=rCLKCON 保存原始數(shù)據(jù) 0x4c00000c 使能各模塊的時鐘輸入
tst r0,#0x8 ;測試bit[3] SLEEP mode? 1=>sleep
bne ENTER_SLEEP ;C=0,即TST結(jié)果非0,bit[3]=1
;//進入PWDN后如果不是sleep則進入stop
;//進入Stop mode
ENTER_STOP
ldr r0,=REFRESH ;0x48000024 DRAM/SDRAM refresh config
ldr r3,[r0] ;r3=rREFRESH
mov r1, r3
orr r1, r1, #BIT_SELFREFRESH ;Enable SDRAM self-refresh
str r1, [r0] ;Enable SDRAM self-refresh
;//Enable SDRAM self-refresh
mov r1,#16 ;wait until self-refresh is issued. may not be needed.
0 subs r1,r1,#1
bne %B0
;//wait 16 fclks for self-refresh
ldr r0,=CLKCON ;enter STOP mode.
str r2,[r0]
;//??????????????
mov r1,#32
0 subs r1,r1,#1 ;1) wait until the STOP mode is in effect.
bne %B0 ;2) Or wait here until the CPU&Peripherals will be turned-off
;Entering SLEEP mode, only the reset by wake-up is available.
ldr r0,=REFRESH ;exit from SDRAM self refresh mode.
str r3,[r0]
MOV_PC_LR ;back to main process
ENTER_SLEEP
;NOTE.
;1) rGSTATUS3 should have the return address after wake-up from SLEEP mode.
ldr r0,=REFRESH
ldr r1,[r0] ;r1=rREFRESH
orr r1, r1, #BIT_SELFREFRESH
str r1, [r0] ;Enable SDRAM self-refresh
;//Enable SDRAM self-refresh
mov r1,#16 ;Wait until self-refresh is issued,which may not be needed.
0 subs r1,r1,#1
bne %B0
;//Wait until self-refresh is issued,which may not be needed
ldr r1,=MISCCR ;IO register
ldr r0,[r1]
orr r0,r0,#(7<<17) ;Set SCLK0=1, SCLK1=1, SCKE=1.
str r0,[r1]
ldr r0,=CLKCON ; Enter sleep mode
str r2,[r0]
b . ;CPU will die here.
;//進入Sleep Mode,1)設(shè)置SDRAM為self-refresh
;// 2)設(shè)置MISCCR bit[17] 1:sclk0=sclk 0:sclk0=0
;// bit[18] 1:sclk1=sclk 0:sclk1=0
;// bit[19] 1:Self refresh retain enable
;// 0:Self refresh retain disable
;// When 1, After wake-up from sleep, The self-refresh will be retained.
WAKEUP_SLEEP
;Release SCLKn after wake-up from the SLEEP mode.
ldr r1,=MISCCR
ldr r0,[r1]
bic r0,r0,#(7<<17) ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE:0->=SCKE.
str r0,[r1]
;//設(shè)置MISCCR
;Set memory control registers
ldr r0,=SMRDATA
ldr r1,=BWSCON ;BWSCON Address ;//總線寬度和等待控制寄存器
add r2, r0, #52 ;End address of SMRDATA
0
ldr r3, [r0], #4 ;數(shù)據(jù)處理后R0自加4,[R0]->R3,R0+4->R0
str r3, [r1], #4
cmp r2, r0
bne %B0
;//設(shè)置所有的memory control register,他的初始地址為BWSCON,初始化
;//數(shù)據(jù)在以SMRDATA為起始的存儲區(qū)
mov r1,#256
0 subs r1,r1,#1 ;1) wait until the SelfRefresh is released.
bne %B0
;//1) wait until the SelfRefresh is released.
ldr r1,=GSTATUS3 ;GSTATUS3 has the start address just after SLEEP wake-up
ldr r0,[r1]
mov pc,r0
;//跳出Sleep Mode,進入Sleep狀態(tài)前的PC
;//異常中斷宏調(diào)用
LTORG
HandlerFIQ HANDLER HandleFIQ
HandlerIRQ HANDLER HandleIRQ
HandlerUndef HANDLER HandleUndef
HandlerSWI HANDLER HandleSWI
HandlerDabort HANDLER HandleDabort
HandlerPabort HANDLER HandlePabort
IsrIRQ
sub sp,sp,#4 ;reserved for PC
stmfd sp!,{r8-r9}
ldr r9,=INTOFFSET ;地址為0x4a000014的空間存著中斷的偏移
ldr r9,[r9] ;I_ISR
ldr r8,=HandleEINT0
add r8,r8,r9,lsl #2
ldr r8,[r8]
str r8,[sp,#8]
ldmfd sp!,{r8-r9,pc}
;//外部中斷號判斷,通過中斷服務(wù)程序入口地址存儲器的地址偏移確定
;//PC=[HandleEINT0+][INTOFFSET]]
;=======
; ENTRY
;扳子上電和復(fù)位后 程序開始從位于0x0執(zhí)行b ResetHandler 程序從跳轉(zhuǎn)到這里執(zhí)行
;板子上電復(fù)位后 執(zhí)行幾個步驟這里通過標(biāo)號在注釋中加1,2,3....標(biāo)示 標(biāo)號表示執(zhí)行順序
;1.禁止看門狗 屏蔽所有中斷
;=======
ResetHandler
;//1.禁止看門狗 屏蔽所有中斷
ldr r0,=WTCON ;watch dog disable
ldr r1,=0x0
str r1,[r0]
ldr r0,=INTMSK
ldr r1,=0xffffffff ;all interrupt disable
str r1,[r0]
ldr r0,=INTSUBMSK
ldr r1,=0x3ff ;all sub interrupt disable
str r1,[r0]
[ {FALSE}
;//rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4);
;//Led_Display
ldr r0,=GPFCON ;//F-IO In/Out config 10 10 10 10 00 00 00 00
ldr r1,=0x5500 ;//00 = Input 01 = Output
str r1,][r0] ;//10 = EINT[0] 11 = Reserved
ldr r0,=GPFDAT ;//F-IO data register
ldr r1,=0x10
str r1,[r0]
]
評論