Linux學習-等待隊列
我就簡要的分析分析等待隊列的一些問題,就相當于自己的總結(jié)吧。邊學驅(qū)動,邊學內(nèi)核,還是蠻有意思的。
1、等待隊列的定義,包括兩個,等待隊列頭,節(jié)點。
struct __wait_queue_head {
spinlock_t lock; /*自旋鎖*/
struct list_head task_list; /*鏈表頭*/
};
typedef struct __wait_queue_head wait_queue_head_t;
...
struct __wait_queue {
unsigned int flags;
#define WQ_FLAG_EXCLUSIVE 0x01
void *private;
wait_queue_func_t func;
struct list_head task_list;
};
/*關(guān)于等待隊列的操作主要是初始化操作*/
#define DECLARE_WAIT_QUEUE_HEAD(name)
wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
/*就是初始化兩個元素*/
#define __WAIT_QUEUE_HEAD_INITIALIZER(name) {
.lock = __SPIN_LOCK_UNLOCKED(name.lock),
.task_list = { &(name).task_list, &(name).task_list } }
#define init_waitqueue_head(q)
do {
static struct lock_class_key __key;
__init_waitqueue_head((q), &__key);
} while (0)
void __init_waitqueue_head(wait_queue_head_t *q, struct lock_class_key *key)
{
spin_lock_init(&q->lock);
lockdep_set_class(&q->lock, key);
INIT_LIST_HEAD(&q->task_list);
}
從上面的定義可知,實質(zhì)上等待隊列頭很簡單,只要就是一個鏈表頭,而等待隊列的節(jié)點主要包含了一個函數(shù)指針和對應的參數(shù),以及鏈表。
我們在驅(qū)動過程中主要使用的函數(shù)主要包括wait_event(),wait_event_interruptible(),wait_event_killable(),以及喚醒過程中的wait_up(),wait_up_interruptible().
基本的流程就是:
#define wait_event(wq, condition)
do {
if (condition)
/*添加滿足,則直接跳出*/
break;
/*負責進入等待隊列*/
__wait_event(wq, condition);
} while (0)
#define __wait_event(wq, condition)
do {
/*定義新的等待隊列節(jié)點*/
DEFINE_WAIT(__wait);
for (;;) {/*一個循環(huán)的過程,可能導致堵塞*/
/*將添加的節(jié)點添加到隊列中,并改變進程的運行狀態(tài)*/
prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE);
if (condition)/*如果條件合適了,就跳出當前的循環(huán),也就是等待條件獲得*/
break;
/*當前進程放棄CPU,進行調(diào)度其他的進程,這時的進程進入睡眠狀態(tài)
也就是說在schedule中函數(shù)就不在繼續(xù)執(zhí)行,只有調(diào)用wake_up函數(shù)喚
醒當前的進程,才會退出schedule函數(shù),然后繼續(xù)執(zhí)行下面的函數(shù),也就是繼續(xù)循環(huán)
真正的退出循環(huán),只有當條件滿足時,如果條件不滿足,調(diào)用wake_up函數(shù)
仍然不會滿足條件,只會再次調(diào)度,再次失去CPU,
根據(jù)上面的分析可知,只有上面的條件滿足了,并調(diào)用
wake_up函數(shù)才能跳出當前的for循環(huán)。
*/
schedule();
}
/*完成等待*/
finish_wait(&wq, &__wait);
} while (0)
#define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
#define DEFINE_WAIT_FUNC(name, function)
wait_queue_t name = {
.private = current,
.func = function,
.task_list = LIST_HEAD_INIT((name).task_list),
}
void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
/*改變狀態(tài)*/
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
/*如果鏈表是空,則將當前的這個節(jié)點添加進來,這樣能避免wait被反復的添加,造成大量的浪費*/
if (list_empty(&wait->task_list))
__add_wait_queue(q, wait);
/*修改當前進程的狀態(tài)*/
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
}
#define set_current_state(state_value)
set_mb(current->state, (state_value))
static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
{
/*就是將鏈表添加進來而已*/
list_add(&new->task_list, &head->task_list);
}
void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
/*修改當前進程的狀態(tài)為TASK_RUNNING,因此可以被執(zhí)行*/
__set_current_state(TASK_RUNNING);
/*
* We can check for list emptiness outside the lock
* IFF:
* - we use the "careful" check that verifies both
* the next and prev pointers, so that there cannot
* be any half-pending updates in progress on other
* CPUs that we havent seen yet (and that might
* still change the stack area.
* and
* - all other users take the lock (ie we can only
* have _one_ other CPU that looks at or modifies
* the list).
*/
/*刪除鏈表,實質(zhì)上就是釋放*/
if (!list_empty_careful(&wait->task_list)) {
spin_lock_irqsave(&q->lock, flags);
list_del_init(&wait->task_list);
spin_unlock_irqrestore(&q->lock, flags);
}
}
asmlinkage void __sched schedule(void)
{
struct task_struct *prev, *next;
unsigned long *switch_count;
struct rq *rq;
int cpu;
need_resched:
preempt_disable();
cpu = smp_processor_id();
rq = cpu_rq(cpu);
rcu_note_context_switch(cpu);
prev = rq->curr;
release_kernel_lock(prev);
need_resched_nonpreemptible:
schedule_debug(prev);
if (sched_feat(HRTICK))
hrtick_clear(rq);
raw_spin_lock_irq(&rq->lock);
switch_count = &prev->nivcsw;
if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
if (unlikely(signal_pending_state(prev->state, prev))) {
prev->state = TASK_RUNNING;
} else {
/*
* If a worker is going to sleep, notify and
* ask workqueue whether it wants to wake up a
* task to maintain concurrency. If so, wake
* up the task.
*/
if (prev->flags & PF_WQ_WORKER) {
struct task_struct *to_wakeup;
to_wakeup = wq_worker_sleeping(prev, cpu);
if (to_wakeup)
try_to_wake_up_local(to_wakeup);
}
deactivate_task(rq, prev, DEQUEUE_SLEEP);
}
switch_count = &prev->nvcsw;
}
pre_schedule(rq, prev);
if (unlikely(!rq->nr_running))
idle_balance(cpu, rq);
put_prev_task(rq, prev);
next = pick_next_task(rq);
clear_tsk_need_resched(prev);
rq->skip_clock_update = 0;
if (likely(prev != next)) {
sched_info_switch(prev, next);
perf_event_task_sched_out(prev, next);
rq->nr_switches++;
rq->curr = next;
++*switch_count;
context_switch(rq, prev, next); /* unlocks the rq */
/*
* The context switch have flipped the stack from under us
* and restored the local variables which were saved when
* this task called schedule() in the past. prev == current
* is still correct, but it can be moved to another cpu/rq.
*/
cpu = smp_processor_id();
rq = cpu_rq(cpu);
} else
raw_spin_unlock_irq(&rq->lock);
post_schedule(rq);
if (unlikely(reacquire_kernel_lock(prev)))
goto need_resched_nonpreemptible;
preempt_enable_no_resched();
if (need_resched())
goto need_resched;
}
根據(jù)上面的各個函數(shù),宏定義可知,在wait_event函數(shù)中完成了大部分的事情,其中包括等待隊列節(jié)點的定義,添加,當前進程運行狀態(tài)的改變,等待條件的滿足,跳出等待,函數(shù)介紹之前需要完成的任務(wù)是修改當前進程的狀態(tài)為TASK_RUNNING,刪除鏈表,釋放一些空間。
其他的函數(shù)wait_event_interruptible以及wait_event_killable具有相似的操作,只是對前期修改進程狀態(tài)存在差別。wait_event_interruptible則不一定只能在條件滿足時喚醒,也可以被信號喚醒,而wait_event則在條件滿足時被喚醒。
評論