如何正確掌握選擇MOSFET的技巧?
MOSFET是電氣系統(tǒng)中的基本部件,工程師需要深入了解它的關(guān)鍵特性及指標(biāo)才能做出正確選擇。隨著制造技術(shù)的發(fā)展和進(jìn)步,系統(tǒng)設(shè)計人員必須跟上技術(shù)的發(fā)展步伐,才能為其設(shè)計挑選最合適的電子器件。本文將討論如何根據(jù)RDS(ON)、熱性能、雪崩擊穿電壓及開關(guān)性能指標(biāo)來選擇正確的MOSFET.
本文引用地址:http://www.ex-cimer.com/article/201612/328021.htm一種可以廣泛使用在模擬電路與數(shù)字電路的場效晶體管(field-effect transistor)就是金屬-氧化層-半導(dǎo)體-場效晶體管,簡稱金氧半場效晶體管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)。MOSFET在概念上屬于“絕緣柵極場效晶體管”(Insulated-Gate Field Effect Transistor,IGFET),而IGFET的柵極絕緣層有可能是其他物質(zhì)而非MOSFET使用的氧化層.有些人在提到擁有多晶硅柵極的場效晶體管元件時比較喜歡用IGFET,但是這些IGFET多半指的是MOSFET.
下圖是典型平面N溝道增強型MOSFET的剖面圖.它用一塊P型硅半導(dǎo)體材料作襯底(圖la),在其面上擴散了兩個N型區(qū)(圖lb),再在上面覆蓋一層二氧化硅(SiO2)絕緣層(圖1c),最后在N區(qū)上方用腐蝕的方法做成兩個孔,用金屬化的方法分別在絕緣層上及兩個孔內(nèi)做成三個電極:G(柵極)、S(源極)及D(漏極),如圖1d所示。
圖1、2、3:平面N溝道增強型MOSFET
從圖1中可以看出柵極G與漏極D及源極S是絕緣的,D與S之間有兩個PN結(jié)。一般情況下,襯底與源極在內(nèi)部連接在一起。
圖3是N溝道增強型MOSFET的基本結(jié)構(gòu)圖。為了改善某些參數(shù)的特性,如提高工作電流、提高工作電壓、降低導(dǎo)通電阻、提高開關(guān)特性等有不同的結(jié)構(gòu)及工藝,構(gòu)成所謂VMOS、DMOS、TMOS等結(jié)構(gòu)。圖2是一種N溝道增強型功率MOSFET的結(jié)構(gòu)圖。要使增強型N溝道MOSFET工作,要在G、S之間加正電壓VGS及在D、S之間加正電壓VDS,則產(chǎn)生正向工作電流ID.改變VGS的電壓可控制工作電流ID見圖3所示。
MOSFET有兩大類型:N溝道和P溝道。在功率系統(tǒng)中,MOSFET可被看成電氣開關(guān)。當(dāng)在N溝道MOSFET的柵極和源極間加上正電壓時,其開關(guān)導(dǎo)通。導(dǎo)通時,電流可經(jīng)開關(guān)從漏極流向源極。漏極和源極之間存在一個內(nèi)阻,稱為導(dǎo)通電阻RDS(ON)。必須清楚MOSFET的柵極是個高阻抗端,因此,總是要在柵極加上一個電壓。如果柵極為懸空,器件將不能按設(shè)計意圖工作,并可能在不恰當(dāng)?shù)臅r刻導(dǎo)通或關(guān)閉,導(dǎo)致系統(tǒng)產(chǎn)生潛在的功率損耗。當(dāng)源極和柵極間的電壓為零時,開關(guān)關(guān)閉,而電流停止通過器件。雖然這時器件已經(jīng)關(guān)閉,但仍然有微小電流存在,這稱之為漏電流,即IDSS.
第一步:選用N溝道還是P溝道
為設(shè)計選擇正確器件的第一步是決定采用N溝道還是P溝道MOSFET.在典型的功率應(yīng)用中,當(dāng)一個MOSFET接地,而負(fù)載連接到干線電壓上時,該MOSFET就構(gòu)成了低壓側(cè)開關(guān)。在低壓側(cè)開關(guān)中,應(yīng)采用N溝道MOSFET,這是出于對關(guān)閉或?qū)ㄆ骷桦妷旱目紤]。當(dāng)MOSFET連接到總線及負(fù)載接地時,就要用高壓側(cè)開關(guān)。通常會在這個拓?fù)渲胁捎肞溝道MOSFET,這也是出于對電壓驅(qū)動的考慮。
要選擇適合應(yīng)用的器件,必須確定驅(qū)動器件所需的電壓,以及在設(shè)計中最簡易執(zhí)行的方法。下一步是確定所需的額定電壓,或者器件所能承受的最大電壓。額定電壓越大,器件的成本就越高。根據(jù)實踐經(jīng)驗,額定電壓應(yīng)當(dāng)大于干線電壓或總線電壓。這樣才能提供足夠的保護(hù),使MOSFET不會失效。就選擇MOSFET而言,必須確定漏極至源極間可能承受的最大電壓,即最大VDS.知道MOSFET能承受的最大電壓會隨溫度而變化這點十分重要。設(shè)計人員必須在整個工作溫度范圍內(nèi)測試電壓的變化范圍。額定電壓必須有足夠的余量覆蓋這個變化范圍,確保電路不會失效。設(shè)計工程師需要考慮的其他安全因素包括由開關(guān)電子設(shè)備(如電機或變壓器)誘發(fā)的電壓瞬變。不同應(yīng)用的額定電壓也有所不同;通常,便攜式設(shè)備為20V、FPGA電源為20~30V、85~220VAC應(yīng)用為450~600V.
第二步:決定開關(guān)性能
選擇MOSFET的第二步是決定MOSFET的開關(guān)性能。影響開關(guān)性能的參數(shù)有很多,但最重要的是柵極/漏極、柵極/ 源極及漏極/源極電容。這些電容會在器件中產(chǎn)生開關(guān)損耗,因為在每次開關(guān)時都要對它們充電。MOSFET的開關(guān)速度因此被降低,器件效率也下降。為計算開關(guān)過程中器件的總損耗,設(shè)計人員必須計算開通過程中的損耗(Eon)和關(guān)閉過程中的損耗(Eoff)。MOSFET開關(guān)的總功率可用如下方程表達(dá):Psw=(Eon+Eoff)×開關(guān)頻率。而柵極電荷(Qgd)對開關(guān)性能的影響最大。
基于開關(guān)性能的重要性,新的技術(shù)正在不斷開發(fā)以解決這個開關(guān)問題。芯片尺寸的增加會加大柵極電荷;而這會使器件尺寸增大。為了減少開關(guān)損耗,新的技術(shù)如溝道厚底氧化已經(jīng)應(yīng)運而生,旨在減少柵極電荷。舉例說,SuperFET這種新技術(shù)就可通過降低RDS(ON)和柵極電荷(Qg),最大限度地減少傳導(dǎo)損耗和提高開關(guān)性能。這樣,MOSFET就能應(yīng)對開關(guān)過程中的高速電壓瞬變(dv/dt)和電流瞬變(di/dt),甚至可在更高的開關(guān)頻率下可靠地工作。
第三步:確定額定電流
第三步是選擇MOSFET的額定電流。視電路結(jié)構(gòu)而定,該額定電流應(yīng)是負(fù)載在所有情況下能夠承受的最大電流。與電壓的情況相似,設(shè)計人員必須確保所選的MOSFET能承受這個額定電流,即使在系統(tǒng)產(chǎn)生尖峰電流時。兩個考慮的電流情況是連續(xù)模式和脈沖尖峰。在連續(xù)導(dǎo)通模式下,MOSFET處于穩(wěn)態(tài),此時電流連續(xù)通過器件。脈沖尖峰是指有大量電涌(或尖峰電流)流過器件。一旦確定了這些條件下的最大電流,只需直接選擇能承受這個最大電流的器件便可。
選好額定電流后,還必須計算導(dǎo)通損耗。在實際情況下,MOSFET并不是理想的器件,因為在導(dǎo)電過程中會有電能損耗,這稱之為導(dǎo)通損耗。MOSFET在“導(dǎo)通”時就像一個可變電阻,由器件的RDS(ON)所確定,并隨溫度而顯著變化。器件的功率耗損可由Iload2×RDS(ON)計算,由于導(dǎo)通電阻隨溫度變化,因此功率耗損也會隨之按比例變化。對MOSFET施加的電壓VGS越高,RDS(ON)就會越小;反之RDS(ON)就會越高。對系統(tǒng)設(shè)計人員來說,這就是取決于系統(tǒng)電壓而需要折中權(quán)衡的地方。對便攜式設(shè)計來說,采用較低的電壓比較容易(較為普遍),而對于工業(yè)設(shè)計,可采用較高的電壓。注意RDS(ON)電阻會隨著電流輕微上升。關(guān)于RDS(ON)電阻的各種電氣參數(shù)變化可在制造商提供的技術(shù)資料表中查到。
技術(shù)對器件的特性有著重大影響,因為有些技術(shù)在提高最大VDS時往往會使RDS(ON)增大。對于這樣的技術(shù),如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,從而增加與之配套的封裝尺寸及相關(guān)的開發(fā)成本。業(yè)界現(xiàn)有好幾種試圖控制晶片尺寸增加的技術(shù),其中最主要的是溝道和電荷平衡技術(shù)。
在溝道技術(shù)中,晶片中嵌入了一個深溝,通常是為低電壓預(yù)留的,用于降低導(dǎo)通電阻RDS(ON)。為了減少最大VDS對RDS(ON)的影響,開發(fā)過程中采用了外延生長柱/蝕刻柱工藝。例如,飛兆半導(dǎo)體開發(fā)了稱為SuperFET的技術(shù),針對RDS(ON)的降低而增加了額外的制造步驟。這種對RDS(ON)的關(guān)注十分重要,因為當(dāng)標(biāo)準(zhǔn)MOSFET的擊穿電壓升高時,RDS(ON)會隨之呈指數(shù)級增加,并且導(dǎo)致晶片尺寸增大。SuperFET工藝將RDS(ON)與晶片尺寸間的指數(shù)關(guān)系變成了線性關(guān)系。這樣,SuperFET器件便可在小晶片尺寸,甚至在擊穿電壓達(dá)到600V的情況下,實現(xiàn)理想的低RDS(ON)。結(jié)果是晶片尺寸可減小達(dá)35%.而對于最終用戶來說,這意味著封裝尺寸的大幅減小。
第四步:確定熱要求
選擇MOSFET的最后一步是計算系統(tǒng)的散熱要求。設(shè)計人員必須考慮兩種不同的情況,即最壞情況和真實情況。建議采用針對最壞情況的計算結(jié)果,因為這個結(jié)果提供更大的安全余量,能確保系統(tǒng)不會失效。在MOSFET的資料表上還有一些需要注意的測量數(shù)據(jù);比如封裝器件的半導(dǎo)體結(jié)與環(huán)境之間的熱阻,以及最大的結(jié)溫。
器件的結(jié)溫等于最大環(huán)境溫度加上熱阻與功率耗散的乘積(結(jié)溫=最大環(huán)境溫度+[熱阻×功率耗散])。根據(jù)這個方程可解出系統(tǒng)的最大功率耗散,即按定義相等于I2×RDS(ON)。由于設(shè)計人員已確定將要通過器件的最大電流,因此可以計算出不同溫度下的RDS(ON)。值得注意的是,在處理簡單熱模型時,設(shè)計人員還必須考慮半導(dǎo)體結(jié)/器件外殼及外殼/環(huán)境的熱容量;即要求印刷電路板和封裝不會立即升溫。
雪崩擊穿是指半導(dǎo)體器件上的反向電壓超過最大值,并形成強電場使器件內(nèi)電流增加。該電流將耗散功率,使器件的溫度升高,而且有可能損壞器件。半導(dǎo)體公司都會對器件進(jìn)行雪崩測試,計算其雪崩電壓,或?qū)ζ骷姆€(wěn)健性進(jìn)行測試。計算額定雪崩電壓有兩種方法;一是統(tǒng)計法,另一是熱計算。而熱計算因為較為實用而得到廣泛采用。
不少公司都有提供其器件測試的詳情,如飛兆半導(dǎo)體提供了“Power MOSFET Avalanche Guidelines”( Power MOSFET Avalanche Guidelines--可以到Fairchild網(wǎng)站去下載)。除計算外,技術(shù)對雪崩效應(yīng)也有很大影響。例如,晶片尺寸的增加會提高抗雪崩能力,最終提高器件的穩(wěn)健性。對最終用戶而言,這意味著要在系統(tǒng)中采用更大的封裝件。
綜上所述,通過以上對MO
評論