基于GT4的聚類分析算法研究
1.引言
計算機(jī)網(wǎng)絡(luò)技術(shù)的普及與應(yīng)用給人們的生活帶來了翻天覆地的變化,同時在網(wǎng)絡(luò)上產(chǎn)生了大量雜亂無章的數(shù)據(jù)。而網(wǎng)格技術(shù)、Web技術(shù)的發(fā)展,為人們從分布的網(wǎng)絡(luò)資源中尋找有價值的信息提供了新的技術(shù)支持,同時也產(chǎn)生了許多基于網(wǎng)格的數(shù)據(jù)挖掘系統(tǒng)。而數(shù)據(jù)挖掘算法又是決定一個數(shù)據(jù)挖掘系統(tǒng)性能的主要衡量指標(biāo)。任何軟件系統(tǒng)的設(shè)計都離不開算法,數(shù)據(jù)挖掘技術(shù)的執(zhí)行效率也與數(shù)據(jù)挖掘算法有關(guān),隨著數(shù)據(jù)庫技術(shù)與數(shù)據(jù)挖掘技術(shù)的成熟與發(fā)展,像分類、聚類、決策樹、關(guān)聯(lián)等等數(shù)據(jù)挖掘算法已相當(dāng)成熟,可以研究借鑒現(xiàn)有數(shù)據(jù)挖掘方法、數(shù)據(jù)挖掘模式、數(shù)據(jù)挖掘流程,建立一個基于網(wǎng)格的數(shù)據(jù)挖掘系統(tǒng)。筆者以眾多數(shù)據(jù)挖掘算法中的聚類分析算法為例,介紹基于GT4(Globus Tookit 4.0的簡稱,GT4的核心開發(fā)工具包(Java Web Service Core))的數(shù)據(jù)挖掘算法的設(shè)計過程。
聚類分析(Clustering Analysis)是一個應(yīng)用比較廣泛的數(shù)據(jù)挖掘算法,算法的理論研究與實踐應(yīng)用都已經(jīng)很成熟,把這一成熟的理論應(yīng)用于基于網(wǎng)格的分布式系統(tǒng)中,會大大提高數(shù)據(jù)挖掘的效率。本文主要研究如何將聚類分析的CURE(Cluster Using Representation)算法和K-平均方法算法應(yīng)用于基于GT4數(shù)據(jù)挖掘系統(tǒng)中。
2.系統(tǒng)結(jié)構(gòu)設(shè)計
基于GT4數(shù)據(jù)挖掘系統(tǒng)的數(shù)據(jù)源是分布式數(shù)據(jù)源,分布式數(shù)據(jù)源是指在物理上分布而邏輯上集中的數(shù)據(jù)源系統(tǒng)。在該系統(tǒng)中,處在這個網(wǎng)格中的每臺計算機(jī)就是這個網(wǎng)格的一個節(jié)點,稱之為網(wǎng)格節(jié)點。在眾多的節(jié)點中,要有一個網(wǎng)格節(jié)點來控制和管理其他的節(jié)點,這個節(jié)點就叫做網(wǎng)格中心控制節(jié)點,決策支持都是由網(wǎng)格中心控制節(jié)點完成的。如果要完成某個數(shù)據(jù)挖掘任務(wù),則可以由空閑的網(wǎng)格節(jié)點先按挖掘需求來完成本節(jié)點的挖掘任務(wù),再由網(wǎng)格中心控制節(jié)點來匯總每個節(jié)點的數(shù)據(jù)挖掘情況。局部網(wǎng)格節(jié)點管理的信息具有局限性,涉及的范圍較小,主要完成單個節(jié)點數(shù)據(jù)的管理,對局部的數(shù)據(jù)挖掘結(jié)果進(jìn)行匯總分析,但是這些局部節(jié)點的數(shù)據(jù)與全局節(jié)點的數(shù)據(jù)又是有一定關(guān)聯(lián)的。根據(jù)以上的分析可知,網(wǎng)格平臺下的數(shù)據(jù)挖掘任務(wù)由全局?jǐn)?shù)據(jù)挖掘與局部數(shù)據(jù)挖掘共同完成。
3.算法的Web Service設(shè)計
3.1 全局聚類算法的Web Service設(shè)計
網(wǎng)格環(huán)境下的全局控制網(wǎng)格節(jié)點與局部網(wǎng)格節(jié)點間的關(guān)系我們可以理解為上下層的關(guān)系,這樣就可以借鑒基于層次的聚類分析算法,按照層次的自底向上的聚類方式,把全局控制節(jié)點當(dāng)成是層次聚類的頂層。本課題全局聚類算法借鑒傳統(tǒng)的利用代表點聚類算法CURE.
CURE算法將層次方法與劃分方法結(jié)合到一起,選用有代表性的、固定數(shù)目的空間點來表示一個聚類。算法在開始時,每個點都是一個簇,然后將距離最近的簇結(jié)合,一直到簇的個數(shù)為要求的K.首先把每個數(shù)據(jù)點即局部網(wǎng)格節(jié)點看成一個聚類,然后再以一個特定的收縮因子向中心收縮它們。
CURE算法的主要執(zhí)行步驟如下:
(1)從數(shù)據(jù)源樣本對象中隨機(jī)抽取樣本集,生成一個樣本集合S;
(2)將樣本集合S分割為一組劃分,每個劃分大小為S/p;
(3)對每個劃分部分進(jìn)行局部聚類;
(4)通過隨機(jī)采樣剔除聚類增長太慢的異常數(shù)據(jù);
(5)對局部聚類進(jìn)行聚類,落在每個新形成的聚類中的代表性點,則根據(jù)用戶定義的收縮因子收縮或移向聚類中心;
(6)用相應(yīng)的標(biāo)記對聚類中的數(shù)據(jù)標(biāo)上聚類號。
有了數(shù)據(jù)挖掘算法,就可以完成數(shù)據(jù)挖掘任務(wù)了。全局聚類算法的主要功能是響應(yīng)用戶的數(shù)據(jù)挖掘請求,將對應(yīng)的請求發(fā)送給局部網(wǎng)格節(jié)點,將局部網(wǎng)格節(jié)點的挖掘結(jié)果整理輸出。全局聚類算法Web Service資源的結(jié)構(gòu)包括算法Web Service接口、算法資源屬性文檔、算法功能實現(xiàn)和算法功能發(fā)布四個部分。
利用傳統(tǒng)的聚類算法完成全局的數(shù)據(jù)的并行挖掘最重要的一步就是將全局聚類算法部署到GT4中,完成全局聚類算法的Web Service設(shè)計要經(jīng)過過以下幾步:
第一步:用WSDL(Web Service描述語言,是Web Service提供的XLM語言)來描述數(shù)據(jù)挖掘服務(wù)接口,該服務(wù)接口可以用Java來定義,利用Java-to-WSDL工具把Java定義的接口轉(zhuǎn)為WSDL文件。
第二步:用Java編寫全局聚類算法(CURE)代碼;
第三步:用WSDD配置文件和JNDI(GT4自帶文件)部署文件;
第四步:用Ant工具打包上面的所有文件,生成一個GAR文件;
第五步:向Web Service容器部署全局?jǐn)?shù)據(jù)挖掘服務(wù)。
3.2 局部聚類算法的Web Service設(shè)計
局部聚類算法的主要功能是完成局部網(wǎng)格節(jié)點的數(shù)據(jù)挖掘任務(wù),并把數(shù)據(jù)挖掘結(jié)果上傳到全局控制節(jié)點。局部網(wǎng)格節(jié)點的數(shù)據(jù)挖掘任務(wù)與傳統(tǒng)的單機(jī)數(shù)據(jù)挖掘任務(wù)類似,本課題局部聚類算法使用傳統(tǒng)的聚類算法K-平均方法,以K為參數(shù),把N個對象分為K個簇,簇內(nèi)具有較高的相似度,而簇間的相似度較低[34].本論文的數(shù)據(jù)挖掘任務(wù)主要是由局部網(wǎng)格節(jié)點實現(xiàn)的,下面就詳細(xì)的介紹K-平均算法的主要執(zhí)行過程如下:
(1)從數(shù)據(jù)集中任意選擇K個對象作為各個簇的初始中心。
(2)根據(jù)現(xiàn)有的簇中心情況,利用距離公式計算其他對象到各個簇中心的距離。(可選的距離公式有:歐幾里、行德公式、距離公式、曼哈坦距離公式、明考斯基距離公式)。
(3)根據(jù)所得各個對象的距離值,將對象分配給距離最近的中心所對應(yīng)的簇。
(4)重新生成各個簇的中心。
(5)判斷是否收斂。如果收斂,即簇不在發(fā)生變化,那么停止劃分,否則,重復(fù)(2)到(5)。
K-平均算法是一個經(jīng)典的聚類算法,將K-平均算法部署到GT4中,完成局部聚類算法的Web Service設(shè)計,部署方法與全局算法相似。
4.結(jié)論
基于GT4的數(shù)據(jù)挖掘系統(tǒng)中的數(shù)據(jù)挖掘服務(wù)資源有網(wǎng)格的中心控制節(jié)點(即全局節(jié)點)進(jìn)行統(tǒng)一的管理,在局部網(wǎng)格節(jié)點挖掘過程中,根據(jù)其處理能力分配最佳的數(shù)據(jù)集給局部節(jié)點,從而使整個系統(tǒng)的計算負(fù)載相對均衡。其數(shù)據(jù)挖掘系統(tǒng)的規(guī)模可隨著服務(wù)的多少動態(tài)伸縮。當(dāng)系統(tǒng)要增加新的局部挖掘節(jié)點時,只需部署局部Web Service資源即可。將網(wǎng)格應(yīng)用到分布式數(shù)據(jù)挖掘系統(tǒng)中,建立一個基于網(wǎng)格的數(shù)據(jù)挖掘系統(tǒng),必將使其在各個領(lǐng)域都得到廣泛的應(yīng)用。
評論