<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 淺析LabVIEW的智能車仿真系統(tǒng)應(yīng)用設(shè)計案例

          淺析LabVIEW的智能車仿真系統(tǒng)應(yīng)用設(shè)計案例

          作者: 時間:2016-12-09 來源:網(wǎng)絡(luò) 收藏

          本仿真系統(tǒng)基于LabVIEW虛擬儀器技術(shù)開發(fā)完成,用于智能車的算法仿真及分析。

          本文引用地址:http://www.ex-cimer.com/article/201612/328565.htm

          1 基本構(gòu)架

          圖1是整個仿真系統(tǒng)的構(gòu)架圖,主要分為基本模型層、控制算法層、通訊層以及仿真環(huán)境層。

          基本模型層包括賽車模型與賽道模型,使用者可根據(jù)實際情況設(shè)定模型參數(shù),它為整個系統(tǒng)提供了底層的驅(qū)動,仿真結(jié)果都是在這兩個模型的基礎(chǔ)上計算的。

          圖1 仿真系統(tǒng)構(gòu)架圖

          控制算法層為使用者提供了3種不同的仿真方案:SubVI、C結(jié)點以及單片機在線仿真,具體在后文將會詳述。使用者可選擇其中一個方案輸入或移植自己的控制算法。

          通訊層只用于單片機的在線仿真,使用CAN模塊,可以使單片機與仿真系統(tǒng)進行即時的數(shù)據(jù)交流,從而實現(xiàn)動態(tài)仿真。

          動態(tài)仿真環(huán)境基于賽車、賽道模型以及控制算法所輸出的控制信號(電機控制、轉(zhuǎn)向控制及車速信號等),計算出車的行走路線,并即時地將數(shù)據(jù)傳回控制算法層(其計算周期可調(diào))。

          憑借軟件仿真的優(yōu)勢,在仿真過程中,系統(tǒng)可以方便地將各種變量記錄下來,特別是一些實際試驗時無法測量的量(如賽車相對于賽道中心線的偏移量、前向角、加速度等),并保存于文件中。在回放模式中,用戶可以調(diào)用這些文件,對其仿真結(jié)果進行后期分析和處理,繼而改進自己的賽車設(shè)置以及控制算法。

          2.賽道、賽車、路徑識別模型

          我們知道,一個具有高級控制策略的智能車應(yīng)該在不同的賽道上都具有穩(wěn)定的發(fā)揮,為了驗證這一點,就必須在不同的賽道上做試驗。然而,由于各方面的限制,我們不可能為賽車制作無數(shù)的賽道進行測試。但這個問題卻可在Plastid中輕易地得到解決:我們可以設(shè)計出不同的賽道,并將其保存成文件,在仿真時將其調(diào)用即可。

          圖2是Plastid的賽道設(shè)計界面,用戶可以使用“點”來精確設(shè)定賽道曲線的下一點位置,使用“弧”則可以以圓心坐標、角度來繪制想要得到的弧線,更可以直接采用“手繪”用鼠標在屏幕上繪制賽道或從數(shù)據(jù)文件中導(dǎo)入曲線。其操作界面友好,修改方便,且易于上手和操作。

          圖2 賽道設(shè)計界面

          為了仿真方便,我們將賽車簡化為一個四輪剛體模型,除了一些基本的尺寸參數(shù)之外,在前輪轉(zhuǎn)向系統(tǒng),根據(jù)賽車的實際情況,我們用“轉(zhuǎn)向速度”與“最大轉(zhuǎn)向角”兩個參數(shù)來模擬。

          對于路徑識別系統(tǒng),Plstid給予使用者至多8個的光感傳感器的坐標設(shè)定,使用者可以任意地安排傳感器的個數(shù)和相對于車的排列坐標(將傳感器安排成一條直線,或者弧線等方案),從而達到自己想要的識別效果。

          對于加速的模擬,目前系統(tǒng)暫時以直接加速度為控制量,在對實車進行測試和分析后,將構(gòu)建相應(yīng)的模型。

          圖3即賽車設(shè)計的操作界面,左邊為賽車的基本參數(shù),右邊為傳感器坐標設(shè)定、試驗賽道生成以及傳感器值的即時顯示(試駕時用)。

          使用者除了可以設(shè)定賽車參數(shù)外,還可以對所設(shè)定好的賽車進行“試駕”,當(dāng)場檢驗所設(shè)計參數(shù)的優(yōu)劣,并可將賽車信息保存于文件,供仿真時調(diào)入使用。

          圖3 賽車參數(shù)設(shè)定界面3.控制算法仿真

          Plastid針對不同的使用者提供了三種不同的控制算法仿真方案:子VI(SubVI)、C結(jié)點以及單片機的在線仿真。

          首先,最接近于LabVIEW編程環(huán)境的即為SubVI方案。用戶將自己的控制算法,移植為LabVIEW的SubVI,Plastid在仿真時即時地給該SubVI輸入變量(車速、傳感器值等),SubVI通過計算得出控制量并輸送給Plastid仿真循環(huán)。SubVI方案對于熟悉LabVIEW G語言編程方法的使用者來說非常簡單,但它的缺點是移植性較差,由于C語言和G語言的差別較大,因此將單片機的控制算法轉(zhuǎn)換為子VI的程序需要一定的工作量。

          其次,C結(jié)點方案則更適合于采用C語言編程的使用者們,其原理與SubVI方案類似,但是其程序則可直接用C語言編寫,用Visual Studio IDE將其編譯為dll文件,系統(tǒng)在仿真時會自動調(diào)用該dll,從而實現(xiàn)與SubVI一樣的控制和反饋。對于本方案,使用者可以將其單片機的程序進行適當(dāng)?shù)男薷暮蠹纯墒褂?,因此移植性較高。

          最后,利用CAN模塊,系統(tǒng)可以直接與單片機進行直接通訊,并實現(xiàn)在線仿真。單片機方面只需要在其CAN接口即時地傳送其控制量(這在程序中很容易添加相應(yīng)程序),而Plastid則通過CAN模塊得到這些量,并傳送反饋量給單片機。在這一方案,單片機的程序修改不大,但需要有CAN模塊等硬件支持。

          圖4為系統(tǒng)動態(tài)仿真的界面,使用者在加載完賽道與賽車文件后,即可進行動態(tài)的仿真。其中仿真周期表示系統(tǒng)每一次計算的時間,可以根據(jù)單片機的運算周期進行設(shè)定,但值得一提的是,在仿真過程中,其真實的仿真周期會根據(jù)計算機的性能等因素而不同,但其仿真的結(jié)果可以保證確實根據(jù)該仿真周期計算而得,從而保證其仿真的可靠性。

          圖4 動態(tài)仿真界面

          4.不足與改進

          由于Plastid仿真系統(tǒng)還未與實車的仿真進行過深入比較,且開發(fā)周期也較短,因此必然留有一些不足之處。

          該系統(tǒng)目前還只能用于采用光感傳感器路徑識別方案的智能車,對于CCD攝像頭技術(shù)還不支持。

          其次,在仿真過程中,系統(tǒng)只是根據(jù)汽車的運動學(xué)模型(將車簡化為一四輪剛體來處理)進行計算,并未考慮其側(cè)滑以及路面摩擦力的影響。這將使其仿真結(jié)果與實際結(jié)果有一定差距,我們將在后續(xù)工作中根據(jù)實車的情況,不斷進行實車試驗和對比,從而提高其仿真真實度,使其能盡可能地模擬出實際的情況。

          最后,計算速度也是系統(tǒng)必須面臨的一大問題。對此,我們將優(yōu)化代碼,并裁剪不必要的程序,從而提高系統(tǒng)的仿真速度。



          關(guān)鍵詞: LabVIEW智能車仿

          評論


          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();