基于圖像的機(jī)器人視覺伺服實驗研究
制造出像人一樣具有智能的能替代人類勞動的機(jī)器人,一直是人類的夢想,人類獲取的信息80%以上是通過視覺。因此,在智能機(jī)器人的研究中,具有視覺的機(jī)器人的研究也就成了第一位的。對機(jī)器人視覺伺服系統(tǒng)的研究是機(jī)器人領(lǐng)域中的重要內(nèi)容之一,其研究成果可應(yīng)用在機(jī)器人自動避障、軌跡跟蹤和運動目標(biāo)跟蹤等問題中。從反饋信息類型的角度分類,機(jī)器人視覺伺服系統(tǒng)可分為基于位置的視覺伺服系統(tǒng)(position-base)和基于圖像的視覺伺服系統(tǒng)(image-base)[1]?;谖恢玫囊曈X伺服系統(tǒng)首先要估計目標(biāo)物體在直角坐標(biāo)空間中相對于攝像機(jī)的位置,其視覺伺服誤差定義在三維笛卡爾空間,視覺或特征信息用來估計機(jī)械手末端與目標(biāo)的相對位姿,這種方法需要對視覺系統(tǒng)和機(jī)器人進(jìn)行精確標(biāo)定,另外由于要對圖像進(jìn)行解釋,因而計算量較大。基于圖像的視覺伺服系統(tǒng)的伺服誤差直接定義在圖像特征空間,即攝像機(jī)觀察到的特征信息直接用于反饋,不需要對三維姿態(tài)進(jìn)行估計,但系統(tǒng)需在線計算圖像雅可比矩陣(圖像特征參數(shù)變化量與任務(wù)空間位姿變化量的關(guān)系矩陣)及其逆陣,而圖像雅可比矩陣跟許多實時變化的參數(shù)有關(guān),這是一個復(fù)雜的非線性過程,從理論上很難分析,并且對機(jī)器人的控制設(shè)計提出了較大的要求[2]。機(jī)器人視覺伺服系統(tǒng)是一個很復(fù)雜的系統(tǒng),綜合了許多學(xué)科的內(nèi)容,而各學(xué)科的發(fā)展又極不平衡,影響了其進(jìn)一步發(fā)展。正是基于此,機(jī)器人視覺伺服研究目前處于停滯不前的狀態(tài),國內(nèi)對此方面的研究大多只是進(jìn)行了仿真實驗,而未在實際機(jī)器人系統(tǒng)上實現(xiàn)。本文利用松下交流伺服系統(tǒng)、pmac運動控制卡、dsp圖像處理系統(tǒng)、工控機(jī)和機(jī)器人組成了伺服系統(tǒng),在具體機(jī)器人系統(tǒng)中對其進(jìn)行實驗研究,探索基于圖像的機(jī)器人視覺伺服實現(xiàn)問題。
機(jī)器人視覺伺服系統(tǒng)組成部分
機(jī)器人系統(tǒng)及研究內(nèi)容
圖1是本實驗的機(jī)器人系統(tǒng)硬件圖。二自由度平面機(jī)器人的第一關(guān)節(jié)垂直固定于工作平臺上,2個關(guān)節(jié)均由松下交流伺服電機(jī)驅(qū)動,且只能在水平平面內(nèi)轉(zhuǎn)動,固定于第二根桿末端的攝像頭為單目ccd攝像頭,用dsp圖像處理系統(tǒng)完成圖像采集、處理,提取目標(biāo)特征值作為視覺信息反饋量。本文選取圓形目標(biāo)物體的灰度質(zhì)心在圖像平面的坐標(biāo)值作為圖像特征[3]。本文研究的是基于圖像的機(jī)器人視覺伺服系統(tǒng)的伺服實現(xiàn)問題,根據(jù)目標(biāo)物體圖像特征值的變化控制機(jī)器人兩關(guān)節(jié)的運動使其第二根桿末端能跟蹤到位于工作臺上的靜止或運動物體,對系統(tǒng)實現(xiàn)視覺伺服控制。
機(jī)器人視覺系統(tǒng)數(shù)學(xué)模型
本文擬對系統(tǒng)進(jìn)行實驗研究。建立機(jī)器人坐標(biāo)、攝像機(jī)坐標(biāo)、圖像坐標(biāo)和目標(biāo)點坐標(biāo)的坐標(biāo)變換關(guān)系。圖2是在機(jī)器人的第二根桿末端安裝一個攝像頭,形成eye-in-hand構(gòu)型而建立的坐標(biāo)變換關(guān)系圖。圖3是攝像機(jī)系統(tǒng)坐標(biāo)與圖像坐標(biāo)的關(guān)系及成像原理示意圖。
設(shè)機(jī)器人第一關(guān)節(jié)和第二關(guān)節(jié)的轉(zhuǎn)角分別為θ1和θ2,第一根桿長為l1,第二根桿長為l2。選取圖2中o點作為基坐標(biāo)參考點,用[x0 y0 z0]t表示,攝像機(jī)坐標(biāo)系用[xc yc zc]t表示,圖像坐標(biāo)系用[u w]t表示;機(jī)器人第一關(guān)節(jié)用[x1 y1 z1]t表示,第二關(guān)節(jié)用[x2 y2 z2]t表示,設(shè)固定的目標(biāo)點pc在攝像機(jī)坐標(biāo)系(c)的齊次坐標(biāo)為: pc =[xc yc zc1]t,在基坐標(biāo)系(o)的齊次坐標(biāo)為:p0=[x0 y0 z0 1]t,兩個坐標(biāo)系之間的變換關(guān)系為:p0=0tcpc。
根據(jù)機(jī)器人運動學(xué)得到攝像機(jī)坐標(biāo)系與基坐標(biāo)系之間的變換矩陣如下:
松下交流伺服系統(tǒng)
本實驗中機(jī)器人兩個關(guān)節(jié)均是由松下交流伺服電機(jī)驅(qū)動,電機(jī)和其驅(qū)動控制器共同構(gòu)成了松下交流伺服系統(tǒng)。松下minasa系列交流伺服系統(tǒng)由a系列驅(qū)動器和配套交流伺服電機(jī)組成。其以三相交流伺服系統(tǒng)為基本原理[5],采用光電編碼器作為電機(jī)轉(zhuǎn)速和轉(zhuǎn)子磁極位置檢測單元,系統(tǒng)在驅(qū)動器內(nèi)部集成了相關(guān)功能模塊,構(gòu)成了一個高集成度、高控制精度、數(shù)字化、智能化的閉環(huán)伺服控制系統(tǒng)。根據(jù)期望輸入指令值,按照已設(shè)定好的控制方式和各參數(shù)設(shè)定值,驅(qū)動器控制各相關(guān)功能單元,產(chǎn)生出控制igbtpwm模塊的信號,最終控制伺服電機(jī)按照期望值運轉(zhuǎn)。系統(tǒng)具有分倍頻功能,可以以多種形式將反饋脈沖輸出給外部控制器或接收位置控制指令信號。系統(tǒng)具有多種控制模式,如速度和轉(zhuǎn)矩控制模式,以模擬信號作為輸入,本文采用的是轉(zhuǎn)矩控制模式[6]。
pmac運動控制卡
pmac運動控制卡是美國delta tau data systems公司生產(chǎn)的一種可編程、高性能伺服運動多軸控制器,采用motorola公司的數(shù)字信號處理芯片dsp56001作為cpu。
pmac可認(rèn)為是一臺完整的計算機(jī),用dsp芯片作為主處理器,處理8個軸的所有計算并可同時控制8軸運動,具有獨立的存儲空間、輸入輸出接口以及其他外圍擴(kuò)展電路。它可與各種類型的主機(jī)、放大器、電機(jī)、傳感器結(jié)合完成各種類型的功能,只要我們應(yīng)用好其硬件特性和軟件特性,依據(jù)特定的功能要求對其進(jìn)行設(shè)置,就能使它正常高效地工作。pmac卡為用戶提供了pwin32應(yīng)用軟件和pcomm32pro動態(tài)鏈接庫。高級語言通過pcomm32pro動態(tài)鏈接庫,可以直接調(diào)用相關(guān)函數(shù)與pmac卡進(jìn)行通訊,從而實現(xiàn)對pmac卡的控制[7]。本文將它與松下交流伺服系統(tǒng)配合使用。
相關(guān)推薦
技術(shù)專區(qū)
- FPGA
- DSP
- MCU
- 示波器
- 步進(jìn)電機(jī)
- Zigbee
- LabVIEW
- Arduino
- RFID
- NFC
- STM32
- Protel
- GPS
- MSP430
- Multisim
- 濾波器
- CAN總線
- 開關(guān)電源
- 單片機(jī)
- PCB
- USB
- ARM
- CPLD
- 連接器
- MEMS
- CMOS
- MIPS
- EMC
- EDA
- ROM
- 陀螺儀
- VHDL
- 比較器
- Verilog
- 穩(wěn)壓電源
- RAM
- AVR
- 傳感器
- 可控硅
- IGBT
- 嵌入式開發(fā)
- 逆變器
- Quartus
- RS-232
- Cyclone
- 電位器
- 電機(jī)控制
- 藍(lán)牙
- PLC
- PWM
- 汽車電子
- 轉(zhuǎn)換器
- 電源管理
- 信號放大器
評論