<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 測試測量 > 設(shè)計(jì)應(yīng)用 > 一款高效反激式開關(guān)電源的設(shè)計(jì)以及性能測試

          一款高效反激式開關(guān)電源的設(shè)計(jì)以及性能測試

          作者: 時(shí)間:2017-02-27 來源:網(wǎng)絡(luò) 收藏
          由于傳統(tǒng)開關(guān)電源存在對電網(wǎng)造成諧波污染以及工作效率低等問題,因此目前國內(nèi)外各類開關(guān)電源研究機(jī)構(gòu)正努力尋求運(yùn)用各種高新技術(shù)改善電源性能。.其中,在開關(guān)電源設(shè)計(jì)中通過功率因數(shù)校正PFC(Power Factor Correction)技術(shù)降低電磁污染及利用同步整流技術(shù)提高效率的研發(fā)途徑尤其受到重視。

          本文設(shè)計(jì)并制作了一種高效低電磁污染的開關(guān)電源樣機(jī)。測試結(jié)果表明,該電源具有優(yōu)良的動態(tài)性能、較高的功率因數(shù)和工作效率,且控制簡單,故具有一定的實(shí)際應(yīng)用價(jià)值。

          開關(guān)電源設(shè)計(jì)方案

          開關(guān)電源的結(jié)構(gòu)如圖1所示,它主要由220V交流電壓整流及濾波電路、功率因數(shù)校正電路、DC/DC變換器三大部分組成。


          220V交流電經(jīng)整流供給功率因數(shù)校正電路,采用Boost型PFC來提高電源的輸入功率因數(shù),同時(shí)降低了諧波電流,從而減小了諧波污染。PFC的輸出為一直流電壓UC,通過DC/DC變換可將該電壓變換成所要求的兩輸出直流電壓Uo1(12V)和Uo2(24V)。


          從圖中可以看出,本電源系統(tǒng)設(shè)計(jì)的關(guān)鍵是在整流濾波器和DC/DC變換器之間加入了功率因數(shù)校正電路,使輸入電流受輸入電壓嚴(yán)格控制,以實(shí)現(xiàn)更高的功率因數(shù)。同時(shí)設(shè)計(jì)中還采用同步整流技術(shù)以減少整流損耗,提高DC/DC變換效率。選用反激式準(zhǔn)諧振DC/DC變換器,既能增強(qiáng)對輸入電壓變化的適應(yīng)能力,又可以降低工作損耗。

          為保證開關(guān)電源的性能,電源實(shí)際制作時(shí)還附加了一些電路:(1)保護(hù)電路。防止負(fù)載本身的過壓、過流或短路;(2)軟啟動控制電路。它能保證電源穩(wěn)定、可靠且有序地工作,防止啟動時(shí)電壓電流過沖;(3)浪涌吸收電路。防止因浪涌電壓電流而引起輸出紋波峰-峰值過高及高頻輻射和高次諧波的產(chǎn)生。

          開關(guān)電源主要器件選擇

          1、APFC芯片及控制方案

          電源中功率因數(shù)校正電路以Infineon(英飛凌)公司生產(chǎn)的TDA4863芯片為核心,電路如圖2所示。開關(guān)管VT1選用增強(qiáng)型MOSFET。具體控制方案為:從負(fù)載側(cè)A點(diǎn)反饋取樣,引入雙閉環(huán)電壓串聯(lián)負(fù)反饋,以穩(wěn)定DC/DC變換器的輸入電壓和整個(gè)系統(tǒng)的輸出電壓。


          2、準(zhǔn)諧振DC/DC變換器


          DC/DC變換器的類型有多種[7],為了保證用電安全,本設(shè)計(jì)方案選為隔離式。隔離式DC/DC變換形式又可進(jìn)一步細(xì)分為正激式、反激式、半橋式、全橋式和推挽式等。其中,半橋式、全橋式和推挽式通常用于大功率輸出場合,其激勵(lì)電路復(fù)雜,實(shí)現(xiàn)起來較困難;而正激式和反激式電路則簡單易行,但由于反激式比正激式更適應(yīng)輸入電壓有變化的情況,且本電源系統(tǒng)中PFC輸出電壓會發(fā)生較大的變化,故本設(shè)計(jì)中的 UC/UO變換采用反激方式,有利于確保輸出電壓穩(wěn)定不變。

          本設(shè)計(jì)采用ONSMEI(安森美)準(zhǔn)諧振型PWM驅(qū)動芯片NCP1207,它始終保持在MOSFET漏極電壓最低時(shí)開通,改善了開通方式,減小了開通損耗。


          圖3是利用NCP1207芯片設(shè)計(jì)的DC/DC反激式變換器電路,其工作原理為:PFC輸出直流電壓UO,一路直接接變壓器初級線圈L1,另一路經(jīng)電阻R3 接到NCP1207高壓端8腳,使電路起振,形成軟啟動電路;NCP1207的5腳輸出驅(qū)動脈沖開通開關(guān)管VT,L1存儲能量,當(dāng)驅(qū)動關(guān)閉時(shí),線圈L2和 L3釋放能量,次級經(jīng)整流濾波后供電給負(fù)載,輔助線圈釋放能量,一部分經(jīng)整流濾波供電給VCC,形成自舉電路,另一部分經(jīng)電阻R1和R2分壓后送到 NCP1207的1腳,來判斷VT軟開通時(shí)刻;光耦P1反饋來自輸出電壓的信號,經(jīng)電阻R7和電容C2組成積分電路濾波后送入NCP1207的2腳,以調(diào)節(jié)輸出電壓的穩(wěn)定,此為電壓反饋環(huán)節(jié)。電阻R6取樣主電流信號,經(jīng)串聯(lián)電阻R5和電容C4組成積分電路濾波后送入NCP1207的3腳,此為電流反饋環(huán)節(jié)。


          3、同步整流管

          電源系統(tǒng)采用電流驅(qū)動同步整流技術(shù),基本思路是通過使用低通態(tài)電阻的MOSFET代替DC/DC變換器輸出側(cè)的整流二極管工作,以最大限度地降低整流損耗,即通過檢測流過自身的電流來獲得MOSFET驅(qū)動信號,VT1在流過正向電流時(shí)導(dǎo)通,而當(dāng)流過自身的電流為零時(shí)關(guān)斷,使反相電流不能流過VT1,故MOSFET與整流二極管一樣只能單向?qū)ā?

          選擇同步整流管主要是考慮管子的通態(tài)電流要大,通態(tài)電阻小,反向耐壓足夠大(應(yīng)按24V時(shí)變壓器次級變換反向電壓計(jì) 算),且寄生二極管反向恢復(fù)時(shí)間要短。經(jīng)對實(shí)際電路的分析計(jì)算,選用ONSEMI公司生產(chǎn)的 MTY100N10E的MOSFET管,其耐壓100V,通態(tài)電流為100A,通態(tài)電阻為11MΩ,反向恢復(fù)時(shí)間為145ns,開通延遲時(shí)間和關(guān)斷延遲時(shí)間分別為48ns和186ns,能滿足系統(tǒng)工作要求。

          降耗及降電磁污染的手段

          1、降耗措施

          (1)利用TDA4863芯片優(yōu)越性能

          TDA4863 的性能特點(diǎn)是:當(dāng)輸入電壓較高時(shí),片內(nèi)APFC電路從電網(wǎng)中吸取較多的功率;反之,當(dāng)輸入電壓較低時(shí)則吸收較少的功率,這就抑制了產(chǎn)生諧波電流,使功率因數(shù)接近單位功率因數(shù);片內(nèi)還包含有源濾波電路,能濾除因輸出電壓脈動而產(chǎn)生的諧波電流;芯片的微電流工作條件也降低了元器件的損耗。

          (2)電壓電流雙閉環(huán)反饋

          因整機(jī)系統(tǒng)形成雙閉環(huán)系統(tǒng),DC/DC變換器輸出穩(wěn)定電壓時(shí)既增大了輸入電阻又減小輸出電阻,達(dá)到了閉環(huán)控制的目的。變換器在較大功率時(shí)呈現(xiàn)同步整流方式,較小功率時(shí)開關(guān)管、整流管均為零電壓開通,同步整流或零電壓開通都極大地降低了管耗。


          上一頁 1 2 下一頁

          評論


          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();