湯曉鷗談AI:深度學(xué)習(xí)三大核心要素
5月20日,以“科研·產(chǎn)業(yè)·融合”為主題的2017CCF青年精英大會(huì)在北京召開(kāi)。本屆大會(huì)由中國(guó)計(jì)算機(jī)學(xué)會(huì)主辦,科技創(chuàng)新產(chǎn)業(yè)服務(wù)平臺(tái)Xtecher協(xié)辦。
本文引用地址:http://www.ex-cimer.com/article/201705/359583.htm中國(guó)工程院院士趙沁平、香港中文大學(xué)教授湯曉鷗、百度創(chuàng)始七劍客之一雷鳴、清華大學(xué)教授鄭緯民、IEEE Fellow陳熙霖、中國(guó)人民大學(xué)教授杜小勇、中國(guó)計(jì)算機(jī)學(xué)會(huì)秘書(shū)長(zhǎng)杜子德、中國(guó)人民大學(xué)信息學(xué)院院長(zhǎng)文繼榮、紅杉資本合伙人周逵、高榕資本創(chuàng)始合伙人岳斌、寰景信息董事長(zhǎng)陳擁權(quán)、CCF YOCSEF學(xué)術(shù)委員會(huì)學(xué)術(shù)秘書(shū)陳健等近五十位學(xué)術(shù)界、產(chǎn)業(yè)界、投資界大佬和數(shù)百位計(jì)算機(jī)領(lǐng)域的科研人才出席了此次活動(dòng)。
本次CCF青年精英大會(huì)進(jìn)行的“思想秀技術(shù)秀”上,共有22位青年學(xué)者、科技人才展示了前瞻性的思想觀點(diǎn)以及最新的技術(shù)成果。最終,評(píng)委會(huì)選出了2位優(yōu)秀青年赴 CNCC(2017中國(guó)計(jì)算機(jī)大會(huì),將于10月26-28日在福州舉行)進(jìn)行演講。
此外,大會(huì)還公布了“青竹獎(jiǎng)” 獲獎(jiǎng)名單,表彰推動(dòng)科研進(jìn)步的青年學(xué)者,鼓勵(lì)產(chǎn)學(xué)研各方面創(chuàng)新人才。“青竹獎(jiǎng)”由中國(guó)計(jì)算機(jī)學(xué)會(huì)牽頭,聯(lián)合Xtecher 共同發(fā)起,經(jīng)過(guò)評(píng)選委員會(huì)李開(kāi)復(fù)、王恩東等17位委員的專業(yè)評(píng)審,最終評(píng)選出了6位獲得“青竹獎(jiǎng)”的最具潛力青年精英:碼隆科技聯(lián)合創(chuàng)始人兼CEO黃鼎隆、真格基金合伙人兼首席投資官李劍威、清華大學(xué)芯視界(北京)科技有限公司創(chuàng)始人兼董事長(zhǎng)鮑捷、中國(guó)科學(xué)院計(jì)算技術(shù)研究所研究員張?jiān)迫?、云從科技公司?chuàng)始人周曦、物靈科技公司聯(lián)合創(chuàng)始人兼CEO顧嘉唯。
在會(huì)議上,香港中文大學(xué)教授湯曉鷗做了主題為《人工智能的明天,中國(guó)去哪?》的特邀報(bào)告。湯曉鷗在演講中,講述了人工智能和深度學(xué)習(xí)的發(fā)展,并指出,深度學(xué)習(xí)的三大核心要素,就是算法設(shè)計(jì)、高性能的計(jì)算能力,以及大數(shù)據(jù)。
湯曉鷗表示:“無(wú)論人工智能怎么樣發(fā)展,年輕人選擇創(chuàng)業(yè)還是做研究,其實(shí)我們要做的就是三件事情:第一,我們需要花時(shí)間把基礎(chǔ)打好。剛才趙沁平院士講得很好,就是要堅(jiān)持,真正花時(shí)間把人工智能的基礎(chǔ)打好。第二,我們要?jiǎng)?chuàng)新,要做新的東西,不要老是跟在別人后面走。第三,我們要把 ‘漂在上面的東西’落地,最終實(shí)現(xiàn)產(chǎn)業(yè)化。”
以下根據(jù)湯曉鷗演講實(shí)錄整理:
今天我講的題目是:《人工智能的明天,中國(guó)去哪兒?》我選了一個(gè)比較大的題目,希望能壓住場(chǎng)。原來(lái)我想的題目比這個(gè)還大:人工智能的明天,地球去哪兒?后來(lái)發(fā)現(xiàn)“一帶一路”會(huì)議剛剛開(kāi)完,地球去哪兒的問(wèn)題已經(jīng)解決了,我還是回到我的小題目——中國(guó)去哪兒。
不管是中國(guó)人工智能接下來(lái)如何發(fā)展,還是年輕人如何創(chuàng)業(yè)或者做研究,我們要做的事情也就是這三件:
第一,要堅(jiān)持,要花時(shí)間把基礎(chǔ)打好。
第二,要做創(chuàng)新。要做新的東西,不要老是跟在別人后面走。
第三,要把飄在上面的東西落地,要產(chǎn)業(yè)化。
今天從我們實(shí)驗(yàn)室的研究成果和公司做的產(chǎn)品,來(lái)講講我對(duì)這三個(gè)方面的理解。
人工智能和深度學(xué)習(xí)的突破
首先,什么是人工智能?這個(gè)概念現(xiàn)在已經(jīng)非常難定義了,大家?guī)缀醢阉械氖虑槎纪斯ぶ悄苌峡?。從我的理解?lái)講,人工智能真正落地的部分就是深度學(xué)習(xí)。因?yàn)橐郧暗娜斯ぶ悄艽_實(shí)是在很多情況下用不起來(lái),人手設(shè)計(jì)的智能還是比較難超越人來(lái)做某一件事情。而有了深度學(xué)習(xí)之后,我們可以把這個(gè)過(guò)程變成一個(gè)數(shù)據(jù)驅(qū)動(dòng)的過(guò)程——當(dāng)做某一件特定事情時(shí)數(shù)據(jù)量及參數(shù)量大到一定程度時(shí),機(jī)器就可能在做這件事情上超過(guò)人類。很多現(xiàn)實(shí)中落地的產(chǎn)品化的東西,大部分是深度學(xué)習(xí)做出來(lái)的。深度學(xué)習(xí)做的東西,成功的案例比較多,一方面是在語(yǔ)音識(shí)別領(lǐng)域,另外可能更多的是視覺(jué)這方面,所以大家可以看到很多計(jì)算機(jī)視覺(jué)方面新的成果。我今天給在座講的人工智能其實(shí)也就是計(jì)算機(jī)視覺(jué),是用深度學(xué)習(xí)去做計(jì)算機(jī)視覺(jué),就變得更窄了。
大家可以看到“深度學(xué)習(xí)“”這個(gè)詞在谷歌上的搜索情況:從2006年才開(kāi)始有人搜索這個(gè)詞,是Hinton(深度學(xué)習(xí)的開(kāi)山鼻祖Geoffrey Hinton)和Yann LeCun(Facebook人工智能研究院院長(zhǎng)、卷積神經(jīng)網(wǎng)絡(luò)之父)們那個(gè)時(shí)候發(fā)明了這個(gè)算法。這中間很長(zhǎng)一段時(shí)間,2006-2011年曲線是很平穩(wěn)的,只有學(xué)術(shù)界才會(huì)去搜索這個(gè)詞語(yǔ),才知道這個(gè)事情。2011年突然之間搜索量開(kāi)始呈現(xiàn)指數(shù)型增長(zhǎng),各行各業(yè)都在討論深度學(xué)習(xí),現(xiàn)在搜索量已經(jīng)非常的巨大。這條曲線形象的演示了深度學(xué)習(xí)的爆發(fā)過(guò)程。
深度學(xué)習(xí)到底在做什么事情?實(shí)際上他所做的事情抽象出來(lái)是比較簡(jiǎn)單的,就是在做一個(gè)從X到Y(jié)的回歸、或者說(shuō)從A到B的Mapping(對(duì)應(yīng))——你給它一個(gè)輸入,我怎么樣給出一個(gè)對(duì)應(yīng)的輸出?特殊的地方就是深度學(xué)習(xí)把這件事情做得非常非常好。以前也有其他算法可以做,只不過(guò)一直做不過(guò)人,現(xiàn)在深度學(xué)習(xí)做到了極致。比如說(shuō)給了一張人臉照片,它就可以給你對(duì)應(yīng)出這個(gè)人的名字;給你一個(gè)物體的形狀,它就可以告訴你是什么物體;給一個(gè)車的行駛場(chǎng)景,我就可以給你輸出這個(gè)車應(yīng)該往哪兒拐;給一個(gè)棋局,它能算出下一步怎么走;給一個(gè)醫(yī)療的圖像,能幫你判斷這是什么病……實(shí)際上就是這樣的一個(gè)過(guò)程。不要把人工智能想象成可以超越人類,可以控制人類,這些都是所謂的“好萊塢的人工智能”或者想象中的人工智能,真正人工智能在現(xiàn)在這個(gè)階段其實(shí)就是做這么簡(jiǎn)單個(gè)事。當(dāng)然做成這個(gè)簡(jiǎn)單的事情其實(shí)已經(jīng)很不簡(jiǎn)單了。
最近這幾年深度學(xué)習(xí)確實(shí)在學(xué)術(shù)界、工業(yè)界取得了重大的突破。第一個(gè)突破是在語(yǔ)音識(shí)別上。Hinton和微軟的鄧力老師,在2011年用深度學(xué)習(xí)在語(yǔ)音識(shí)別上取得了巨大的成功。昨天可能大家在微信也刷屏了,我們中國(guó)科大畢業(yè)的師兄鄧力老師從微軟出來(lái)到頂級(jí)對(duì)沖基金工作。我的理解這也是一個(gè)A to B的mapping 的過(guò)程:把鄧?yán)蠋煹纳疃葘W(xué)習(xí)的經(jīng)驗(yàn)等內(nèi)容都輸入到對(duì)沖基金的算法里,這個(gè)對(duì)沖基金的錢(qián)就自動(dòng)Map到了鄧?yán)蠋熆诖铩?/p>
語(yǔ)音識(shí)別取得了巨大成功以后,緊接著在視覺(jué)方面又取得了重大突破。2012年時(shí),Hinton在ImageNet上將圖像識(shí)別一下子提高了十幾個(gè)點(diǎn),以前我們都一年一個(gè)點(diǎn)在推,他一年就推了十年的進(jìn)步,在學(xué)術(shù)界引起了很大的轟動(dòng)。2014年我們團(tuán)隊(duì)做人臉識(shí)別,通過(guò)深度學(xué)習(xí),做到算法首次超過(guò)人眼的成績(jī)。
最后,在2016年,還是谷歌最厲害,每年120億美金的研發(fā)投入沒(méi)有白投,下了一盤(pán)棋叫AlphaGo,這盤(pán)棋下完之后人工智能就不需要我們解釋了,大家忽然都明白了,人工智能原來(lái)是這么回事兒,就是下棋。
接著人工智能在自動(dòng)駕駛領(lǐng)域也取得了一些重大的突破?,F(xiàn)在比較熱門(mén)的是醫(yī)療影像方面,借助人工智能進(jìn)行診斷。
深度學(xué)習(xí)的三個(gè)核心要素
深度學(xué)習(xí)有三個(gè)核心的要素:
.學(xué)習(xí)算法的設(shè)計(jì),你設(shè)計(jì)的大腦到底夠不夠聰明;
.要有高性能的計(jì)算能力,訓(xùn)練一個(gè)大的網(wǎng)絡(luò);
.必須要有大數(shù)據(jù)。
接下來(lái)分享我們?cè)谏疃葘W(xué)習(xí)方面做的一些工作。我們從2011年開(kāi)始做這項(xiàng)工作,一開(kāi)始沒(méi)有開(kāi)源的框架,所以要自己做很多的工作。做的時(shí)間長(zhǎng)了,我們就做了一套Parrots系統(tǒng),這個(gè)系統(tǒng)目前還不是開(kāi)源的。
我們用這套系統(tǒng)訓(xùn)練的網(wǎng)絡(luò)可以做到非常深,原來(lái)AlexNet是8層,后來(lái)GoogleNet在2014年做到了22層,后來(lái)Resnet做到了150多層,去年我們的PolyNet做到了1000多層。大家可以看到這個(gè)網(wǎng)絡(luò)發(fā)展趨勢(shì),越來(lái)越深。這是我們?cè)O(shè)計(jì)的1000多層的網(wǎng)絡(luò),比較細(xì)的線就是整個(gè)網(wǎng),中間一個(gè)格往下走,放大出來(lái)的部分就是網(wǎng)絡(luò)的細(xì)節(jié)結(jié)構(gòu),這個(gè)網(wǎng)叫做Polynet,Dahua團(tuán)隊(duì)的這個(gè)網(wǎng)絡(luò)設(shè)計(jì)和Facebook的Kaiming團(tuán)隊(duì)的Resnet,在圖像分類上做了目前為止全球最好的結(jié)果,最后基本上成了我們實(shí)驗(yàn)室出來(lái)的兩個(gè)學(xué)生之間的競(jìng)賽。這個(gè)網(wǎng)絡(luò)的最后形狀有點(diǎn)像 DNA 的雙螺旋。
在物體檢測(cè)上大家也可以看到這個(gè)進(jìn)步速度,2013年一開(kāi)始的時(shí)候,200類物體的平均檢測(cè)準(zhǔn)確率是22%,但是很快谷歌可以做到43.9%,我們做到50.3%,緊接著微軟是62%,現(xiàn)在我們做到最好結(jié)果是66%。這個(gè)速度是幾年之內(nèi)翻了三倍,也是深度學(xué)習(xí)的力量,我們這方面的工作是Xiaogang和Wangli團(tuán)隊(duì)做的。
我們訓(xùn)練出來(lái)這樣一個(gè)大腦,可以把它應(yīng)用到各個(gè)方向,做出很多不同領(lǐng)域的不同技術(shù)。在人臉?lè)矫嫖覀冏隽巳四槞z測(cè)、人臉關(guān)鍵點(diǎn)定位、身份證對(duì)比、聚類以及人臉屬性、活體檢測(cè)等等。智能監(jiān)控方面,做了人,機(jī)動(dòng)車,非機(jī)動(dòng)車視頻結(jié)構(gòu)化研究,人體的屬性,我們定義了大約70種。人群定義了90多種屬性。下面這些是衣服的搜索、物體的檢測(cè)、場(chǎng)景的分類和車型的檢測(cè),車型檢測(cè)我們標(biāo)注了幾千種車型的分類。在文字方面,小票的識(shí)別、信用卡的識(shí)別、車牌的識(shí)別,這些都是由深度學(xué)習(xí)的算法來(lái)做的。同時(shí)在圖像的處理方面,在去霧、超分辨率、去抖動(dòng)、去模糊,HDR、各種智能濾鏡的設(shè)計(jì)都是用深度學(xué)習(xí)的算法,我們基本上用一套大腦做很多的任務(wù)。
深度學(xué)習(xí)另外一個(gè)門(mén)檻就是高性能計(jì)算,以前高性能計(jì)算大家都是講的CPU集群,現(xiàn)在做深度學(xué)習(xí)都是GPU,把數(shù)百塊GPU連接起來(lái)做成集群目前是一個(gè)比較大的門(mén)檻。我們?cè)诒本┳隽巳齻€(gè)GPU的集群,在香港做了一個(gè)大的集群,用這些集群,原來(lái)一個(gè)月才能訓(xùn)練出來(lái)的網(wǎng)絡(luò),加速到幾個(gè)小時(shí)就能訓(xùn)練完,因此我們訓(xùn)練了大量的網(wǎng)絡(luò)。
深度學(xué)習(xí)第三個(gè)門(mén)檻就是大數(shù)據(jù),如果把人工智能比喻成一個(gè)火箭的話,大數(shù)據(jù)就是這個(gè)火箭的原料。
我們與300多家工業(yè)界的廠商客戶進(jìn)行合作,積累了大量的數(shù)據(jù),數(shù)億的圖片,我們有300多人的團(tuán)隊(duì)專門(mén)做這個(gè)數(shù)據(jù)標(biāo)注。包括幾千類車型的數(shù)據(jù)、人群的大數(shù)據(jù)以及衣服的搜索和分類的數(shù)據(jù)庫(kù),這些對(duì)于學(xué)術(shù)界以及工業(yè)界都是很有益的。實(shí)際上谷歌所做的數(shù)據(jù)體量更大,他們和National Institutes of Health (NIH)合作很快會(huì)開(kāi)放一個(gè)非常大的醫(yī)療圖像的數(shù)據(jù)庫(kù)。在醫(yī)療方面我相信大家很快會(huì)有大量的數(shù)據(jù)進(jìn)行處理,這個(gè)時(shí)候?qū)τ谖覀兊母咝阅苡?jì)算又提出了一些新的要求。
實(shí)驗(yàn)室有幸對(duì)深度學(xué)習(xí)研究較早。在計(jì)算機(jī)視覺(jué)包括人臉檢測(cè)等各個(gè)方面起步較早,這里列了18項(xiàng)計(jì)算機(jī)視覺(jué)領(lǐng)域由我們?cè)谌蜃钤缣岢鰜?lái)深度學(xué)習(xí)解決方案的問(wèn)題,也相當(dāng)于對(duì)創(chuàng)新的一些貢獻(xiàn)。我們被評(píng)為全亞洲唯一的人工智能研究十大先驅(qū)實(shí)驗(yàn)室,非常榮幸跟MIT、斯坦福、伯克利這樣的名校,以及深度學(xué)習(xí)的頂級(jí)工業(yè)實(shí)驗(yàn)室臉書(shū)、谷歌的深度學(xué)習(xí)負(fù)責(zé)人團(tuán)隊(duì)等等在一起獲選。我們也在研究一些現(xiàn)在沒(méi)有的技術(shù),比如說(shuō),大家可能以前見(jiàn)過(guò)很多依賴深度攝像頭才能做的人體跟蹤算法(比如Kinect)。目前我們團(tuán)隊(duì)做的算法,用很便宜的單個(gè)RGB攝像頭就可以做到同樣效果,這是非常不容易的,尤其要做到實(shí)時(shí),在智能家居,自動(dòng)駕駛等方面都有很大的應(yīng)用前景。
下面這個(gè)工作是去年做的,根據(jù)一張照片里兩個(gè)人的姿勢(shì),可以自動(dòng)判斷兩個(gè)人之間的情感,是友好的還是敵對(duì)的。同時(shí)可以根據(jù)兩個(gè)人的表情也可以判斷兩個(gè)人的關(guān)系。所以以后如果你把你的照片上載到互聯(lián)網(wǎng)上,實(shí)際上我們可以判斷出來(lái)跟你一起照相的這個(gè)人和你具體是什么關(guān)系。
這有什么用途呢?大家經(jīng)常會(huì)把照片放到網(wǎng)上,我們用這些照片分析這些人,如果你跟一個(gè)非常有名的人,或者跟一個(gè)非常有錢(qián)的人照了一張合照,那你這個(gè)人可信度可能就增加?;蛘吣愫鸵粋€(gè)罪犯、或者信譽(yù)不好的人拍了一張照片,你的可信度就下降。我們用這項(xiàng)技術(shù)可以做金融的征信,把不同人的關(guān)系網(wǎng)建立起來(lái),把信用度傳遞出去。這個(gè)關(guān)系問(wèn)題還可以做得更多,把一張圖片任何物體之間,哪個(gè)在上面,哪個(gè)在后面,互相是什么關(guān)系,可以由一張照片判斷出來(lái)。
下面這是最新的工作,我們以前定義了70種人的特性,根據(jù)這個(gè)特性進(jìn)行視頻搜索?,F(xiàn)在定義一個(gè)新的搜索模式,是用自然語(yǔ)言來(lái)搜索,即我說(shuō)一段話來(lái)描述這個(gè)人,把這個(gè)人描述出來(lái)以后用這段話去搜索我要找的這樣一個(gè)人。實(shí)際上,其中涉及的信息量是很大的,尋找也更加精準(zhǔn),我們已經(jīng)建立了一個(gè)大的開(kāi)源的數(shù)據(jù)庫(kù)來(lái)幫助大家做這個(gè)研究。
在這些數(shù)據(jù)中,從這些自然語(yǔ)言里面我們可以抽出不同的詞,用詞來(lái)描述不同的人,其信息量巨大,搜索準(zhǔn)確率也大幅度提高。這是具體的監(jiān)控方面應(yīng)用的結(jié)果。用自然語(yǔ)言做人的搜索。大家可以想像一下在醫(yī)療上的應(yīng)用,如在多模態(tài)的醫(yī)療診斷上。一個(gè)是醫(yī)療的圖像,一個(gè)是醫(yī)生的文字診斷,可以實(shí)時(shí)的識(shí)別出來(lái),進(jìn)行自然語(yǔ)言的分析,把兩個(gè)進(jìn)行結(jié)合再進(jìn)行診斷。
下面這個(gè)也是一項(xiàng)新的研究工作,根據(jù)這個(gè)Video,識(shí)別內(nèi)容,判斷劇情屬性。以泰坦尼克號(hào)電影為例,你可以看到那兩個(gè)曲線,現(xiàn)在是浪漫的場(chǎng)景,代表浪漫的線就上來(lái)了,如果是災(zāi)難,那個(gè)災(zāi)難的綠線就上來(lái)了,實(shí)時(shí)根據(jù)這個(gè)內(nèi)容判斷劇情,這也是去年的工作。
今年目前團(tuán)隊(duì)又做了一個(gè)新的工作,可以根據(jù)電影的實(shí)時(shí)計(jì)算分析,來(lái)理解判斷這里面的劇情,可以把一個(gè)演員,在整個(gè)電影里面,在什么地方出現(xiàn),在那段時(shí)間是什么劇情,用自然語(yǔ)言描述出來(lái),把整個(gè)電影的內(nèi)容分析,用計(jì)算機(jī)視覺(jué)和自然語(yǔ)言自動(dòng)可以分析出來(lái)了。將來(lái)可以用來(lái)分析和插播廣告,還可以直接用自然語(yǔ)言搜索各種不同的片段。
我們還有一項(xiàng)工作是超分辨率,就是把很小的圖像放大,最大化還原細(xì)節(jié)。這是好萊塢電影的圖像,視頻抓到一個(gè)很模糊的嫌疑罪犯的圖像,然后把它實(shí)時(shí)的放大變得很清晰。這只是諜影重重電影上演的效果,還是很震撼的。
2016年的時(shí)候,推特跟谷歌密集發(fā)表了幾篇關(guān)于超分辨率的文章,其核心就是深度學(xué)習(xí)。而我們?cè)缬谒麄儯鸵呀?jīng)做了大量先期研究。我們?cè)?014年發(fā)表了全球第一個(gè)用深度學(xué)習(xí)研究超分辨率的論文,在2015年又發(fā)表了一篇相關(guān)文章,2016年發(fā)表了兩篇,取得了更大的突破,而在2017年緊接著發(fā)表了三篇。我們的Cavan教授團(tuán)隊(duì)是第一個(gè)做的,也是目前做的最好的。目前超分辨率已經(jīng)走向?qū)崟r(shí)以及效果實(shí)用化的階段,利用這項(xiàng)技術(shù)在某些實(shí)時(shí)監(jiān)控,公安監(jiān)控?cái)z像頭可以把人看的比較清晰了。
而在自動(dòng)駕駛上,我們也做了大量研究,六大類別的技術(shù),有30多個(gè)細(xì)分核心技術(shù)。我在這里面就簡(jiǎn)單舉幾個(gè)例子做演示。比如車的檢測(cè)、行人檢測(cè)、路道線的檢測(cè)、實(shí)時(shí)的場(chǎng)景分割……我們也做到前端,用前端的芯片做實(shí)時(shí)的效果。
這是人臉的布控系統(tǒng),目前已在很多城市實(shí)時(shí)布控了。還有百米之外抓人,百米之外看到一個(gè)目標(biāo)拉近然后進(jìn)行人臉識(shí)別。
這是視頻結(jié)構(gòu)化,把視頻里面的人,機(jī)動(dòng)車,非機(jī)動(dòng)車及其特性都檢測(cè)出來(lái)了,自動(dòng)標(biāo)注出來(lái)了,這樣把整個(gè)視頻變成了文檔,就可以進(jìn)行文檔性的搜索。
下面這些也都是我們所做的技術(shù)的落地產(chǎn)品:在中國(guó)移動(dòng)的實(shí)名認(rèn)證系統(tǒng),去年給中國(guó)移動(dòng)做了三億人的實(shí)名認(rèn)證;小米的寶寶相冊(cè);華為Mat8的智能相冊(cè);FaceU、SNOW等做的特效;微博相機(jī);這絕大部分是基于我們的人臉識(shí)別、人臉跟蹤等技術(shù)做出來(lái)的。實(shí)際上在人工智能落地方面我們做了許多的落地產(chǎn)品,去年的雙創(chuàng)活動(dòng)中幾百家企業(yè)里面選了兩家代表中國(guó)人工智能,右邊是百度,左邊是商湯科技。
因?yàn)橹鬓k方希望我講一下學(xué)術(shù)研究和創(chuàng)業(yè)的關(guān)系,我最后總結(jié)一下,在中國(guó)創(chuàng)業(yè)是一個(gè)什么感受?我覺(jué)得中國(guó)創(chuàng)業(yè)就像跑百米一樣,要跑的非??欤谝粋€(gè)到達(dá)終點(diǎn)才可以活下來(lái),但是這個(gè)跑道并不是塑膠跑道,而是滿地都是坑的土路。這場(chǎng)賽跑有兩個(gè)結(jié)局,一個(gè)是全力跑到最快,另外一個(gè)是剛起步就掉到坑里了。創(chuàng)業(yè)的困難是一定存在的,年輕人要不要?jiǎng)?chuàng)業(yè)?盡管路上的坑比較多,但還是可以試一試。
另外用什么錢(qián)創(chuàng)業(yè)也是個(gè)問(wèn)題?什么錢(qián)可以用?什么錢(qián)不可以用?我的忠告是,首先父母的錢(qián)你不可以用,那是他們養(yǎng)老的血汗錢(qián);你自己掙的錢(qián)可以用,你的第一桶金可以用,你們還年輕,用光了可以再去掙。投資人的錢(qián)是可以用的,因?yàn)榇蟛糠侄际怯绣X(qián)人的錢(qián),我覺(jué)得劫富濟(jì)貧人人有責(zé),所以如果大家一定要?jiǎng)?chuàng)業(yè)那就創(chuàng)吧。
評(píng)論