<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 智能計(jì)算 > 業(yè)界動(dòng)態(tài) > 從移動(dòng)芯片到終端計(jì)算:AI找回被放逐的常識

          從移動(dòng)芯片到終端計(jì)算:AI找回被放逐的常識

          作者: 時(shí)間:2017-09-07 來源:36氪 收藏
          編者按:這里所謂的“重回”,并不是說AI運(yùn)行原本就在終端,而是在常識上講,AI在學(xué)習(xí)能力、復(fù)雜任務(wù)處理能力、精準(zhǔn)配合能力上的技術(shù)特征,都應(yīng)該是發(fā)生在終端上的。但一直以來我們看到的AI計(jì)算,卻基本由云端計(jì)算來提供。

            不出所料,9 月 2 日的 IFA 2017 展會(huì)上華為正式發(fā)布了麒麟 970之后,全球首款移動(dòng)芯片瞬間成為了行業(yè)內(nèi)外熱議的焦點(diǎn)。

          本文引用地址:http://www.ex-cimer.com/article/201709/364009.htm

            除了在算力、能效領(lǐng)域本身的提高外,此次更多的關(guān)注點(diǎn)集中在這款芯片搭載了全新的NPU(Neural Processing Unit,神經(jīng)處理單元),從而獲得了人工智能領(lǐng)域的運(yùn)算與處理能力。

            在大量的媒體報(bào)道與解讀當(dāng)中,都將的移動(dòng)芯片身份稱作影響格局,甚至拉升中國整體AI影響力的大事。

            但排除“中國領(lǐng)先”的民族情緒和相對空泛的戰(zhàn)略思想,搭載NPU的移動(dòng)芯片究竟能為用戶和市場提供什么樣的價(jià)值?

            這是我們追問移動(dòng)AI芯片的第一個(gè)問題:面對更高的成本,消費(fèi)者將因何為AI買單?

            我想,所有回答都應(yīng)該開始于一個(gè)樸素的論斷:作為首款移動(dòng)AI芯片,有可能讓AI計(jì)算重回終端。

            產(chǎn)業(yè)的虛幻之舞:云計(jì)算并非AI標(biāo)配

            這里所謂的“重回”,并不是說AI運(yùn)行原本就在終端,而是在常識上講,AI在學(xué)習(xí)能力、復(fù)雜任務(wù)處理能力、精準(zhǔn)配合能力上的技術(shù)特征,都應(yīng)該是發(fā)生在終端上的。但一直以來我們看到的AI計(jì)算,卻基本由云端計(jì)算來提供。

            這里涉及到的一個(gè)AI領(lǐng)域的現(xiàn)狀,也是我們進(jìn)一步解讀麒麟970的基礎(chǔ)。所以我們不妨停留一下,看看人工智能與其背后硬件間的關(guān)系。

            我們知道,AI在眾多層面上都呈現(xiàn)出了全新的運(yùn)算關(guān)系:更趨近現(xiàn)實(shí)世界的運(yùn)算目標(biāo)、更復(fù)雜的算法以及分布式的任務(wù)處理方式,這都讓傳統(tǒng)的CPU難以負(fù)荷。一方面機(jī)器學(xué)習(xí)等AI任務(wù)需要更大的算力和能效,另一方面?zhèn)鹘y(tǒng)運(yùn)算處理方式在進(jìn)行AI任務(wù)的矩陣乘法等運(yùn)算時(shí)指令步驟過多,也有點(diǎn)“驢唇不對馬嘴”的意思——所以AI的工程化和實(shí)用化,必須要獨(dú)立的硬件支撐。

            提供高能效、高運(yùn)算精準(zhǔn)度和識別度的AI芯片與運(yùn)算架構(gòu),近幾年已經(jīng)成為了行業(yè)巨頭的共識。谷歌的TPU在AlphaGo上一戰(zhàn)成名, 加入 Tensor Core 結(jié)構(gòu)的英偉達(dá) Tesla V100成為其股價(jià)上漲的興奮劑,都是AI芯片給行業(yè)帶來的美好回憶。

            (體型確實(shí)不適合民用終端的Tesla V100)

            但這些專注AI處理的芯片與硬件體系卻有一個(gè)共同的特點(diǎn):計(jì)算在云端完成。

            各家如此默契的將AI芯片與云計(jì)算聯(lián)系起來,售賣計(jì)算服務(wù)而不是硬件,內(nèi)中當(dāng)然有很復(fù)雜的原因。首先這一類為了特定應(yīng)用與算法打造的芯片價(jià)值不菲,并且這些芯片集成了大量的固件,體積和重量都不小,也很難安裝在終端當(dāng)中,自然造成了商業(yè)化的可能極具降低。

            除此之外,硬件與互聯(lián)網(wǎng)巨頭對于自身業(yè)務(wù)的把控也是終端AI計(jì)算遲遲不出現(xiàn)的原因之一。無論是谷歌還是英偉達(dá)、微軟、高通,都致力于推廣自身的云服務(wù)業(yè)務(wù)和平臺化業(yè)務(wù)。缺少自身的硬件場景支持商業(yè)路徑,芯片巨頭當(dāng)然更希望用戶群來為自己的核心業(yè)務(wù)付費(fèi)。

            加上技術(shù)難度和對商業(yè)成本的控制,AI逐漸在人們認(rèn)識里成為了一個(gè)由云計(jì)算完成的任務(wù)。但事實(shí)上,這只是技術(shù)把控者出于產(chǎn)業(yè)利益做出的行為。從常識角度來講,云計(jì)算對AI價(jià)值巨大,但絕非AI的標(biāo)準(zhǔn)配置。

           夢幻海灘和私人城堡:AI回歸終端計(jì)算的價(jià)值邏輯

                 也許無人駕駛是一個(gè)理解云計(jì)算與端計(jì)算AI的最好示例:試想行駛中發(fā)生了以外,無人駕駛汽車必須緊急避險(xiǎn)。這時(shí)假如AI需要將收集的道路和車輛信息上傳云端,獲得結(jié)果后再進(jìn)行處置…恐怕黃花菜都涼了,所以必須在車輛的智能體內(nèi)部完成數(shù)據(jù)收集和處理。

            同樣的道理,在手機(jī)中也是一樣——甚至手機(jī)作為與生活的全連接場景,對終端運(yùn)行AI的需求更加多元與基礎(chǔ)化。

            我們可以從內(nèi)外兩個(gè)層面來審視手機(jī)終端運(yùn)算AI任務(wù)帶給用戶的價(jià)值。

            從手機(jī)場景與應(yīng)用的鏈接維度看,AI應(yīng)用的價(jià)值目前體現(xiàn)在三個(gè)領(lǐng)域:視覺領(lǐng)域(圖像、視頻和VR/AR等)、語音領(lǐng)域(語音交互、翻譯等),以及對用戶的學(xué)習(xí)和理解。

            可以想見,這三個(gè)領(lǐng)域不僅囊括了很多新應(yīng)用價(jià)值產(chǎn)生的空間,也對現(xiàn)有主流應(yīng)用構(gòu)成了有效的延展與補(bǔ)充。根據(jù)數(shù)據(jù)顯示,麒麟970當(dāng)中,以臺積電10nm工藝,集成了一個(gè)8核CPU,一個(gè)12核的GPU,以及控制攝像頭的雙ISP模塊。此外最主要的就是處理AI任務(wù)的NPU模塊。

            在提供整合算力的基礎(chǔ)上,其中CPU負(fù)責(zé)通用計(jì)算任務(wù),GPU負(fù)責(zé)圖形處理計(jì)算,而NPU則提供神經(jīng)網(wǎng)絡(luò)運(yùn)算能力,解決需要卷積計(jì)算等運(yùn)算方式的AI任務(wù)。換言之,明確的任務(wù)指向架構(gòu)給AI應(yīng)用提供了最大化的能效比配比與獨(dú)立運(yùn)算空間,雖然這樣達(dá)成的運(yùn)算效果較比云計(jì)算加持的AI芯片應(yīng)該有較大差距,卻給在終端上完成AI應(yīng)用工程化提供了條件。

            對于用戶來說,獨(dú)立的AI運(yùn)算單元最有可能帶來三個(gè)層面的應(yīng)用感提升:

            一、從無到有的AI應(yīng)用:云端進(jìn)行AI計(jì)算再傳輸?shù)浇K端,很多時(shí)候不是計(jì)算效率的問題。而是一來一回的計(jì)算過程讓應(yīng)用本身卡頓嚴(yán)重,甚至無法達(dá)成使用條件?;诮K端的AI計(jì)算則可以憑借能效和性能的提升帶動(dòng)AI應(yīng)用從無到有。

            根據(jù)發(fā)布數(shù)據(jù),麒麟970的架構(gòu)在處理同樣的AI任務(wù)時(shí),得到了50倍能效和25倍性能提升。比如圖像識別速度可以達(dá)到2000張/分鐘。更快的速度不僅是流暢性能的代表,更多是對AR、動(dòng)態(tài)捕捉這類泛AI應(yīng)用臨界值的突破。雖然目前我們還無法預(yù)測麒麟970對應(yīng)的具體應(yīng)用案例,但應(yīng)該有不少此前無法達(dá)成觸發(fā)條件的應(yīng)用在mate10等搭載機(jī)型上誕生。

            二、現(xiàn)有應(yīng)用的升級與延展:無論是微信這樣的超級應(yīng)用,還是今日頭條這樣的內(nèi)容平臺、美圖這樣的圖片處理軟件,都在打AI的牌。這或許說明通過AI來了解用戶,提供針對服務(wù)和體驗(yàn)升級已經(jīng)成為現(xiàn)有軟件突破體驗(yàn)瓶頸的良方。

            但由于手機(jī)環(huán)境的限制,社交、內(nèi)容、圖片處理,甚至游戲等應(yīng)用都難以大量釋放AI功能,因?yàn)闆]有對應(yīng)的運(yùn)算環(huán)境,可能造成大量能耗和流量浪費(fèi),從而出現(xiàn)過猶不及的局面。而終端運(yùn)行的針對性AI計(jì)算能力,或許可以解決這些問題。語音、機(jī)器視覺和機(jī)器學(xué)習(xí)的延伸,在可預(yù)見范圍中是很多已有手機(jī)功能進(jìn)化的必經(jīng)之路。

            三、瞬時(shí)與無網(wǎng)體驗(yàn)加強(qiáng):以拍照、圖片處理、游戲?yàn)橹鞯腁I功能,在用戶交互的邏輯上是完全的閉環(huán)。并且非常強(qiáng)調(diào)體驗(yàn)感與配合度,但假如這些領(lǐng)域的AI處理需要大量依靠云計(jì)算的話,那就會(huì)造成用戶指令響應(yīng)普遍需要延遲,但假如放棄AI又會(huì)造成功能上無法進(jìn)步,很容易造成應(yīng)用開發(fā)者的進(jìn)退失據(jù)。

            終端進(jìn)行AI計(jì)算,最基本的特征是完成了無距離運(yùn)算,可以在獲得AI體驗(yàn)的同時(shí)避免延遲,也就讓這類應(yīng)用的體驗(yàn)度跟上了用戶需求。另一方面,終端計(jì)算AI也可以避免在斷網(wǎng)或者網(wǎng)絡(luò)信號差的情況下AI功能失靈——試想一旦斷網(wǎng)你的自拍就變丑了,那簡直天理難容!

            應(yīng)用角度的價(jià)值之外,AI計(jì)算回歸終端,對內(nèi)也是對用戶數(shù)據(jù)的保護(hù)。

            我們知道,蘋果的眾多官司與糾紛,都來自用戶數(shù)據(jù)大量上傳云端造成的泄露。但siri等智能交互又必須依賴收集用戶數(shù)據(jù),造成了一個(gè)手機(jī)產(chǎn)業(yè)的悖論。而破解方式也很簡單,不上傳云端,本地完成處理用戶數(shù)據(jù)就成了。

            把AI運(yùn)算放在終端內(nèi)部,可以保證智能體學(xué)習(xí)用戶、了解用戶,并以訓(xùn)練數(shù)據(jù)生成獨(dú)特體驗(yàn)的能力。同時(shí)也確保了用戶數(shù)據(jù)與隱私始終存放在終端里,不會(huì)造成泄露和被暴力讀取的可能。

            如今的手機(jī)已經(jīng)變成了強(qiáng)內(nèi)容生產(chǎn)工具,用戶可以以AI為助手完成各種各樣的內(nèi)容生產(chǎn)。這些內(nèi)容上傳云端始終不安全,也沒有法律依據(jù)來支撐,所以就近在終端內(nèi)部完成處理近乎是唯一的妥善方案。

            從更終極的目標(biāo)看,隨著技術(shù)的升級,AI必然要從云端一步步回歸終端。因?yàn)锳I的本質(zhì)是對人腦的仿生研發(fā),追求極致化的神經(jīng)元控制與最短距離反應(yīng)。所以終端AI,或許可以說是人工智能從名到實(shí)的關(guān)鍵一步。

            形象一點(diǎn)來說,AI計(jì)算回歸終端就像構(gòu)筑了一片海景別墅。對應(yīng)用來說,接入了無限多風(fēng)景的想象可能,讓外界非常夢幻。對用戶則構(gòu)筑了更加嚴(yán)實(shí)的私密城堡,確保用戶的安全與隱私不被侵犯。

            反之,放任AI計(jì)算停留在云端的話,應(yīng)用就像困在城堡里,畫地為牢;而用戶卻像睡在海灘上,大敞遙開——反正都不是什么好的體驗(yàn)。

            手機(jī)AI的未來在打破線性發(fā)展

            近三年以來,手機(jī)領(lǐng)域的摩爾定律暫停和產(chǎn)業(yè)競爭同質(zhì)化,成為了行業(yè)的主旋律之一。

            學(xué)界的很多聲音認(rèn)為,手機(jī)更新?lián)Q代速度的暫緩和產(chǎn)品天花板,似乎是因?yàn)橹悄苁謾C(jī)被高度定式化了。手機(jī)廠商出于用戶洞察和戰(zhàn)略競爭考量,從硬件架構(gòu)到運(yùn)算體系都嚴(yán)密遵循一套體系,導(dǎo)致手機(jī)很難發(fā)生定義上的突破,也難有實(shí)質(zhì)性的新能力出現(xiàn)。

            這被稱為智能手機(jī)的線性發(fā)展階段,手機(jī)上的一切都按照固有領(lǐng)域前進(jìn),不能繞道也不能自創(chuàng)新路。而AI技術(shù)的出現(xiàn)則被廣泛視定為智能手機(jī)打破線性發(fā)展的變量。但云計(jì)算驅(qū)動(dòng)的手機(jī)AI應(yīng)用面臨著幾個(gè)問題,比如產(chǎn)業(yè)線索太過冗長、技術(shù)堅(jiān)壁帶來的應(yīng)用開發(fā)成本、手機(jī)環(huán)境縮緊了開發(fā)空間等等。在這個(gè)邏輯上講,創(chuàng)造新的手機(jī)應(yīng)用體驗(yàn),必須以終端計(jì)算的支撐能力作為前提條件。

            舉個(gè)例子,此前谷歌用力推廣,卻最終飽受吐槽的AR應(yīng)用Tango。其問題之一在于捕捉環(huán)境的錯(cuò)誤率過高,相對復(fù)雜一些的畫面場景就容易出錯(cuò)。而背后的原因在于硬件環(huán)境支撐能力不足,無法在復(fù)雜的算法與流暢的體驗(yàn)之間達(dá)成平衡。

            在終端完成AR運(yùn)算,可以獲得更高的運(yùn)算效率,并且憑借AI處理能力來取得更好的環(huán)境分析、動(dòng)作分析和物理?xiàng)l件識別。在體驗(yàn)升級的同時(shí),可交互的玩法想象也突然之間多了不少。實(shí)質(zhì)性提升手機(jī)功能的體驗(yàn)是否就蘊(yùn)藏其間,也是不好說的事。

            總之,麒麟970作為移動(dòng)AI芯片的價(jià)值在于打破開發(fā)者對固有手機(jī)部件的想象界限,從而繞開產(chǎn)業(yè)線性發(fā)展的死循環(huán)。

            當(dāng)然了,這個(gè)計(jì)劃任重道遠(yuǎn),而且需要眾多力量和因素加入進(jìn)來。

            進(jìn)化要素:移動(dòng)AI芯片的生態(tài)叢林

            我們看到,麒麟970發(fā)布時(shí)宣布未來將進(jìn)一步開放生態(tài),引入合作伙伴加入。實(shí)際上這可以說是未來控制AI手機(jī)生態(tài)的關(guān)鍵一環(huán)。畢竟現(xiàn)在僅僅能部署在高端產(chǎn)品中,且用戶認(rèn)知模糊的移動(dòng)AI芯片,最迫切的需求是以手機(jī)應(yīng)用性打開市場局面。

            而這一切的基礎(chǔ),在于以多元化合作的方式,打造基于終端運(yùn)算的手機(jī)AI生態(tài)。

            這里要說明的是,所謂終端AI運(yùn)算絕不可能單純的發(fā)生在終端上。從麒麟970的性能上看,基于高性能計(jì)算的任務(wù)和算法依舊必須依靠云端。而二者協(xié)同組成結(jié)構(gòu)化網(wǎng)絡(luò)恐怕是手機(jī)AI最好的達(dá)成方式。

            除了與云端協(xié)作,手機(jī)AI還必須打造出一套優(yōu)質(zhì)的OS生態(tài),在接口和兼容度上迎接有創(chuàng)意、敢于打破常規(guī)的AI應(yīng)用。并且要保證應(yīng)用與硬件銜接,這都要求芯片在架構(gòu)上有強(qiáng)大的兼容性和開放秩序。

            當(dāng)然,商業(yè)層面的合作也至關(guān)重要,如何促使已經(jīng)形成定勢的開發(fā)者轉(zhuǎn)投華為帶來的終端AI生態(tài)、如何達(dá)成國際化的開發(fā)群落,甚至如何與其他手機(jī)品牌組成共享機(jī)制,都將是制約未來手機(jī)AI發(fā)展的關(guān)鍵因素。

            總之,麒麟970提供的終端AI計(jì)算能力并不是已經(jīng)水到渠成。它的核心價(jià)值在于打破了不合理的產(chǎn)業(yè)規(guī)則,讓“手機(jī)+AI”的命題回歸到了被放逐多時(shí)的常識理性當(dāng)中。而擺在移動(dòng)AI芯片面前的,有充分的利潤誘惑和產(chǎn)業(yè)變局空間,但同樣有大量的未知因素與不確定性。

            只能說,一切剛剛是開始。但面向普通用戶的AI回歸終端計(jì)算,確實(shí)是一條至關(guān)重要道路的開始。



          關(guān)鍵詞: AI 麒麟970

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();