<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 電源與新能源 > 設計應用 > 開關電源變壓器解析,如何判斷開關電源變壓器的好壞

          開關電源變壓器解析,如何判斷開關電源變壓器的好壞

          作者: 時間:2017-10-11 來源:網(wǎng)絡 收藏

            變壓器是加入了開關管的電源變壓器,在電路中除了普通變壓器的電壓變換功能,還兼具絕緣隔離與功率傳送功能一般用在等涉及高頻電路的場合。

          本文引用地址:http://www.ex-cimer.com/article/201710/365296.htm

            

            變壓器和開關管一起構成一個自激(或他激)式的間歇 振蕩器,從而把輸入直流電壓調(diào)制成一個高頻脈沖電壓。起到能量傳遞和轉換作用。在反激式電路中, 當開關管導通時,變壓器把電能轉換成磁場能儲存起來,當開關管截止時則釋放出來。 在正激式電路中,當開關管導通時,輸入電壓直接向負載供給并把能量儲存在儲能電感中。當開關管截止時,再由儲能電感進行續(xù) 流向負載傳遞。把輸入的直流電壓轉換成所需的各種低壓。

            的基本組成:

            的主要材料:磁性材料,導線材料和絕緣材料是開關變壓器的核心。

            磁性材料:開關變壓器使用的磁性材料為軟磁鐵氧體,按其成分和應用頻率可分為MnZn系和NiZn系兩大類。前者具有高的導磁率和高的飽和磁感應,在中頻和低頻范圍具有較低損耗。磁芯的形狀很多,如EI型,E型,EC型等

            導線材料—漆包線:一般用于繞制小型電子變壓器的漆包線有高強度聚酯漆包線(QZ)和聚氨酯漆包線(QA)兩種。根據(jù)漆層厚度分為1型(薄漆型)和2型(厚漆型)兩種。前者的絕緣涂層為聚酯漆,具有優(yōu)越的耐熱性,絕緣性抗電強度可達60kv/mm;后者絕緣層為聚氨酯漆,具有自粘性強,有自焊性能(380℃),可不用去漆膜就可直接焊接

            壓敏膠帶:絕緣膠帶抗電強度高,使用方便機械性能好,被廣泛應用在開關變壓器線圈的層間,組間絕緣和外包絕緣。必須達到下列要求:粘性好,抗剝離,具有一定的拉伸強度,絕緣性能好,耐壓性能好,阻燃和耐高溫

            骨架材料:開關變壓器骨架與一般的變壓器骨架不同,除了作為線圈的絕緣與支撐材料外,還承擔了整個變壓器的安裝固定和定位的作用,因此制作骨架的材料除了滿足絕緣要求外,還應有相當?shù)目估瓘姸?,同時為了承受引腳的耐焊接熱,要求骨架材料的熱變形溫度高于200℃,材料必須達到阻燃,且還應加工性好,易于加工成各種形狀。

            

            的分類及其參數(shù):

            開關電源變壓器分單激式開關電源變壓器和雙激式開關電源變壓器,兩種開關電源變壓器的工作原理和結構并不是一樣的。單激式開關電源變壓器的輸入電壓是單極性脈沖,而其還分正反激電壓輸出;而雙激式開關電源變壓器的輸入電壓是雙極性脈沖,一般是雙極性脈沖電壓輸出。

            特性參數(shù):

            電壓比:指變壓器的初級電壓與次級電壓的比值。

            直流電阻:即銅阻。

            效率:即輸出功率/輸入功率*100[%]

            絕緣電阻:變壓器各繞組之間及對鐵心之間的絕緣能力。

            抗電強度:變壓器在1秒或1分鐘之內(nèi)能承受規(guī)定電壓的程度。

            開關電源變壓器好壞的判斷:

            修理開關電源電路的間歇振蕩故障,代換完除開關變壓器以外的所有懷疑元件后,往往對開關變壓器的好壞仍不能得出較為確切的結論,在尚懷疑惑的情況下,不得不放棄維修。如果此際將檢修再深入一步,能確診開關變壓器的好壞,即能避免功虧一簣,使修復圓滿。

            說到驗證開關變壓器的好壞,什么感應法啊,振鈴法/波形法等等啊,總是有局限的法子,依賴對比數(shù)據(jù),依賴檢測者的經(jīng)驗。如果有簡短直捷的法子,檢測結果又是明明白白的,就好了啊。比如為開關電源送入一個相對安全的低壓,使電路處于非穩(wěn)壓開環(huán)狀態(tài),對負載電路也不會形成什么危害,可以放心大膽地為開關電源加電,就好了啊。那么為電路加多少伏直流電壓算是安全電壓呢?

            恰巧,正好手頭有一款開關變壓器的繞組數(shù)據(jù),DC500V繞組與5V繞組的匝數(shù)比約為20:1,5V繞組為5匝,500V繞組為100匝。振蕩芯片采用3844,輸出脈沖最大占空比為50%。由可以進行粗略估算,當電路開環(huán)工作時,開關管最大占空比輸出時,500V繞組允許最高電壓輸入值為200V。由此可知,此開關電源當輸入電壓不高于DC200V時,能保證二次負載電壓不會高于額定值。

            可見,對于該電路,只要在原電源的DC530V電源輸入端輸入低于200V的直流供電;為3844直接提供高于16V(起振電壓)如18V的供電,不需改變原電壓構成,即可直接驗證開關電源電路中開關變壓器及其它元件的好壞了。在開環(huán)工作狀態(tài)下,開關變壓器各繞組輸出的電壓,應該和其匝數(shù)比成正比/線性關系,若滿足此條件,說明開關變壓器是好的,若二次繞組輸出電壓顯著低于此值,說明開關變壓器不良。

            但這不是通例!近修一臺施耐德ATV31型45kW變頻器的開關電源,開環(huán)狀態(tài)下,輸入電源電壓達DC50V以上后,各路輸出電壓即已達到額定值附近!

            可見,每臺變頻器的開關變壓器因設計一次側匝數(shù)的不確定和不統(tǒng)一,不可貿(mào)然送入較高的供電電壓,手頭最好有無級或變擋可調(diào)的DC0~200V(100V)電源,先從低電壓送起,同時監(jiān)測輸出電壓, 使之低于額定輸出電壓便于工作于監(jiān)測為宜。而這種檢修過程,往往帶給人驚喜:在驗證開關變壓器好壞的同時,故障元件也同步現(xiàn)出原形了。

            

            先看圖,上圖為并聯(lián)在開關變壓器一次繞組N1兩端的電壓吸收網(wǎng)絡。(a)、(b)、(c)分別為常見的三路電路模式(如復合式等,都是我暫時起的名,也許不夠確切),其目的是提供開關管的反向電流通路,抑制開關管截止期間漏/源(或集電極/發(fā)射極)極間反向電壓的幅值,保護開關管的安全及避免磁勢積累。 當(a)電路中的C29漏電;(b)電路中的Z1~Z3擊穿或漏電;(c)C電路中的Z101擊穿或漏電時,導致開關變壓器過載,其二次繞組感生電壓降低。此時,對開關管Q1/T103來說,雖然不會導致其過載(正處于截止期間),但因二次繞組的感生電壓降低(參見圖2電路),當N2繞組感生電壓偏低(如低于10V/PC1的欠電壓動作閥值)時,引起內(nèi)部振蕩電路停止工作,出現(xiàn)間歇振蕩的故障(表現(xiàn)為打融)現(xiàn)象。注意,此電壓間歇振蕩現(xiàn)象是由PC1的欠電壓動作所引起,而非常規(guī)的由二次負載電路過載所引起的過載保護,此時檢查負載電路,當然不會存在過載故障。

            

            我們再來細看一下,當圖1中(a)電路的C29雖然已經(jīng)漏電損壞,但其漏電電阻達數(shù)千歐姆時;當圖1中(b)電路的Z1~Z3擊穿或漏電,但其擊穿電壓達數(shù)伏以上(超出數(shù)字萬用表二極管擋的量程,或擊穿電壓達9V以上,超出指針萬用表內(nèi)部電池的電壓值)或其漏電電阻也為數(shù)千歐姆時;圖1中(c)電路的雙向擊穿二極管Z101擊穿或漏電時,無論是指針式萬用表或數(shù)字式萬用表,即使我們耐心細致地測量了多次,也可能無法得出C29、Z1、Z101已壞的準確結論!

            方便起見,以圖2中N1兩端并聯(lián)的電路為例,當C4的漏電電阻達數(shù)千歐姆時,如果用數(shù)字式萬用表的二極管擋來測量(將表筆搭于C4兩端)正、反向測量兩次的話,顯然,其中一次測量結果是D2的正向導通壓降,一次測量顯示為無窮大“1”,無法得出C4已經(jīng)漏電的準確測量結果;如果用指針式萬用表的電阻擋不測量的話,所測得數(shù)值為C4漏電阻和R8和相關聯(lián)并聯(lián)外電路的總并聯(lián)電阻值,因此數(shù)值較大,也不容易使人判斷C4已經(jīng)漏電損壞。

            像圖1的(b)電路,當Z1雖然已經(jīng)損壞,但其擊穿值遠遠高于萬用表內(nèi)電池電壓時,所測也僅為二極管的正向電阻值(或正向導通壓降),其反向電阻值也是極大的;圖1的(c)電路,如果其故障擊穿值遠高于萬用表內(nèi)部電阻電壓時,則其正、反向導通壓降或正、反向電阻值都是極大的,根本無法判斷其已經(jīng)壞掉!

            應該知道,電容漏電或二極管的擊穿狀態(tài),只有當加于元件兩端的電壓高于一定閥值時,元件的故障狀態(tài)才會有所表現(xiàn)。萬用表在低電壓條件下的測試,故障元件有時卻會“表現(xiàn)正常”。這也是電工師傅在測試電纜或繞組之間的絕緣時,為何要丟開萬用表換用絕緣搖表的緣故。

            綜上所述,當圖中的C29、Z1、Z101等元件損壞后,事實上我們對該元件測量了多遍, 仍為測量結果所蒙蔽時,而對其它元件的測量判斷也非常顯明(沒有問題)時,這時腦海中也會就會冒出一個故障判斷,也許是開關變壓器壞掉(內(nèi)部匝間短路)了吧?有的維修者可能會采取進一步的措施,如用振蕩小板代替除3844及全部外圍電路(N1繞組兩端并聯(lián)的電壓吸收回路卻沒有動它),代用后結果仍然是故障依舊,如此似乎更證實了開關變壓器的故障嫌疑。如果手頭同型號的開關變壓器可以代換試驗的話,則應該輕易修復的故障機器,也許從此就會沉睡在某一角落里了。

            可以想見,開關變壓器壞掉的機率是極低的,對于間歇振蕩所表現(xiàn)出來的“疑難故障”,所以會誤判為開關變壓器損壞,是說明我們的故障檢測方法上,還是有局限之處。

            下面看兩例故障檢測實例:

            1、開關電源上電后出現(xiàn)打嗝聲,測各路輸出直流電壓均極低,且不穩(wěn)定。先從負載電路查起, 無損壞元件。后來重點檢測N1繞組所并聯(lián)的電壓吸收網(wǎng)絡,感覺未有異常。拿來振蕩小板,將振蕩芯片及外圍電路全部代替,上電后故障依舊。說明、振蕩、穩(wěn)壓環(huán)節(jié)皆無問題,重查負載電路也無異常。檢修陷入困境。

            想到是否開關變壓器壞掉?得首先排除這個可能性。

            直接向3844的7、5腳接入DC18V,在開關電源的DC530V電源輸入端,接入DC100V,上電后,電路起振工作,一會兒,圖(c)電路中的Z101開始冒煙。觀察此電路為復合式電壓吸收電路,Z101兩端尚并聯(lián)有阻容吸收電路,臨時摘掉Z101后,測各路直流輸出電壓,其高低與輸入電壓皆成比例(此時開關變壓器的好壞已不言自明)。

            至此,故障原因真相大白,用3只100V穩(wěn)壓管串聯(lián)代替Z101,上電試機,開關電源工作恢復正常。

            2、故障現(xiàn)象同上,檢查方法同上,通電后,Z1、Z2過熱冒煙,此時開關變壓器的好壞已不言自明,間歇振蕩故障的“元兇”也已經(jīng)藏身不住了。用兩只120V穩(wěn)壓管代替Z1、Z2,上電后開關電源工作恢復正常。

            最后再交代一下吧。那么為何用原供電DC530V,電路處于間歇振蕩,而為電路分別接入DC18V和DC100V,即能很快使故障元件無處藏身呢?請參見圖2電路。

            1、PC1振蕩芯片的供電取自N2繞組,當C4嚴重漏電時,開關變壓器儲能不足,N2感生電壓降低,PC1內(nèi)部欠電壓檢測電路動作,電路處于間歇振蕩狀態(tài)。

            獨立為PC1送入DC18V供電后,PC2則能一直穩(wěn)定工作,進而使故障元件暴露出來。

            2、在開關電源的DC530V供電端子送入DC100V,這是一個保險電壓,可以在因故障而穩(wěn)壓失控的情況下,使各路直流輸出電壓不致超過額定值而損壞負載電路,此供電電壓下,可以放心地檢測電路各部分的工作狀態(tài),從而使故障根源暴露出來。如果手頭有0~200V可調(diào)直流電源當然更好,在監(jiān)測輸出電壓的同時,緩慢調(diào)高輸入電源電壓,還可進一步檢測電路由開環(huán)進入穩(wěn)壓控制的過程,驗證電路的穩(wěn)壓環(huán)節(jié)是否正常。



          評論


          相關推薦

          技術專區(qū)

          關閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();