<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 智能計(jì)算 > 設(shè)計(jì)應(yīng)用 > 智能機(jī)器人三大關(guān)鍵技術(shù)詳解

          智能機(jī)器人三大關(guān)鍵技術(shù)詳解

          作者: 時(shí)間:2017-10-22 來(lái)源:網(wǎng)絡(luò) 收藏

          市場(chǎng)研究機(jī)構(gòu)統(tǒng)計(jì)顯示,2015年中國(guó)工業(yè)機(jī)器人市場(chǎng)價(jià)值達(dá)13億美元,并將保持20%的年復(fù)合成長(zhǎng)(CAGR),到2020年達(dá)到33億美元。

          本文引用地址:http://www.ex-cimer.com/article/201710/367596.htm

          2015年,中國(guó)的工業(yè)機(jī)器人銷售收入占全球13%,到2020年將達(dá)到25%。美的花重金收購(gòu)庫(kù)克,大概也是看中工業(yè)機(jī)器人良好的發(fā)展勢(shì)頭。

          工業(yè)機(jī)器人屬于的一種,發(fā)展迅速,下面跟隨小編一起,了解一下中用到的三大關(guān)鍵技術(shù)吧。

          一、多傳感器信息融合

          多傳感器信息融合技術(shù)是近年來(lái)十分熱門的研究課題,它與控制理論、信號(hào)處理、人工智能、概率和統(tǒng)計(jì)相結(jié)合,為機(jī)器人在各種復(fù)雜、動(dòng)態(tài)、不確定和未知的環(huán)境中執(zhí)行任務(wù)提供了一種技術(shù)解決途徑。

          數(shù)據(jù)融合的關(guān)鍵問(wèn)題是模型設(shè)計(jì)和融合算法,數(shù)據(jù)融合模型主要包括功能模型、結(jié)構(gòu)模型和數(shù)學(xué)模型。功能模型從融合過(guò)程出發(fā),描述數(shù)據(jù)融合包括哪些主要功能和數(shù)據(jù)庫(kù),以及進(jìn)行數(shù)據(jù)融合時(shí)系統(tǒng)各組成部分之間的相互作用過(guò)程;結(jié)構(gòu)模型從數(shù)據(jù)融合的組成出發(fā),說(shuō)明數(shù)據(jù)融合系統(tǒng)的軟、硬件組成,相關(guān)數(shù)據(jù)流、系統(tǒng)與外部環(huán)境的人機(jī)界面;數(shù)學(xué)模型是數(shù)據(jù)融合的算法和綜合邏輯,算法主要包括分布檢測(cè)、空間融合、屬性融合、態(tài)勢(shì)評(píng)估和威脅估計(jì)算法等,下面從3個(gè)方面分別進(jìn)行介紹。

          1.信息融合的功能模型

          目前已有很多學(xué)者從不同角度提出了信息融合系統(tǒng)的一般功能模型,最有權(quán)威性的是DFS(美國(guó)三軍政府組織-實(shí)驗(yàn)室理事聯(lián)席會(huì)(JDL)下面的C3I技術(shù)委員會(huì)(TPC3)數(shù)據(jù)融合專家組)提出的功能模型。

          該模型把數(shù)據(jù)融合分為3級(jí)。第1級(jí)是單源或多源處理,主要是數(shù)字處理、跟蹤相關(guān)和關(guān)聯(lián);第2級(jí)是評(píng)估目標(biāo)估計(jì)的集合,及它們彼此和背景的關(guān)系來(lái)評(píng)估整個(gè)情況;第3級(jí)用一個(gè)系統(tǒng)的先驗(yàn)?zāi)繕?biāo)集合來(lái)檢驗(yàn)評(píng)估的情況。

          2.信息融合的結(jié)構(gòu)模型

          數(shù)據(jù)融合的結(jié)構(gòu)模有多種不同的分類方法,其中一種分類標(biāo)準(zhǔn)是根據(jù)傳感器數(shù)據(jù)在送人融合處理中心之前已經(jīng)處理的程度來(lái)進(jìn)行分類。在這種分類標(biāo)準(zhǔn)下,融合結(jié)構(gòu)被分為傳感器級(jí)數(shù)據(jù)融合,中央級(jí)數(shù)據(jù)融合及混合式融合,還可以根據(jù)數(shù)據(jù)處理過(guò)程的分辨率來(lái)對(duì)融合結(jié)構(gòu)進(jìn)行分類。在這種情況下,融合結(jié)構(gòu)為像素級(jí)、特征級(jí)和決策級(jí)融合。

          3.多傳感器信息融合實(shí)現(xiàn)的數(shù)學(xué)模型

          信息融合的方法涉及到多方面的理論和技術(shù),如信號(hào)處理、估計(jì)理論、不確定性理論、模式識(shí)別、最優(yōu)化技術(shù)、模糊數(shù)學(xué)和神經(jīng)網(wǎng)絡(luò)等這方面國(guó)外已經(jīng)做了大量的研究。

          目前,這些方法大致分為兩類:隨機(jī)類方法和人工智能方法。

          二、導(dǎo)航與定位

          在機(jī)器人系統(tǒng)中,自主導(dǎo)航是一項(xiàng)核心技術(shù),是機(jī)器人研究領(lǐng)域的重點(diǎn)和難點(diǎn)問(wèn)題。自主移動(dòng)機(jī)器人常用的導(dǎo)航定位方法有以下四種。

          1、視覺(jué)導(dǎo)航定位

          在視覺(jué)導(dǎo)航定位系統(tǒng)中,目前國(guó)內(nèi)外應(yīng)用較多的是基于局部視覺(jué)的在機(jī)器人中安裝車載攝像機(jī)的導(dǎo)航方式。在這種導(dǎo)航方式中,控制設(shè)備和傳感裝置裝載在機(jī)器人車體上,圖像識(shí)別、路徑規(guī)劃等高層決策都由車載控制計(jì)算機(jī)完成。視覺(jué)導(dǎo)航定位系統(tǒng)主要包括:攝像機(jī)(或CCD圖像傳感器)、視頻信號(hào)數(shù)字化設(shè)備、基于 DSP的快速信號(hào)處理器、計(jì)算機(jī)及其外設(shè)等。現(xiàn)在有很多機(jī)器人系統(tǒng)采用CCD圖像傳感器,其基本元件是一行硅成像元素,在一個(gè)襯底上配置光敏元件和電荷轉(zhuǎn)移器件,通過(guò)電荷的依次轉(zhuǎn)移,將多個(gè)象素的視頻信號(hào)分時(shí)、順序地取出來(lái),如面陣CCD傳感器采集的圖像的分辨率可以從32&TImes;32到1024&TImes;1024像素等。視覺(jué)導(dǎo)航定位系統(tǒng)的工作原理簡(jiǎn)單說(shuō)來(lái)就是對(duì)機(jī)器人周邊的環(huán)境進(jìn)行光學(xué)處理,先用攝像頭進(jìn)行圖像信息采集,將采集的信息進(jìn)行壓縮,然后將它反饋到一個(gè)由神經(jīng)網(wǎng)絡(luò)和統(tǒng)計(jì)學(xué)方法構(gòu)成的學(xué)習(xí)子系統(tǒng),再由學(xué)習(xí)子系統(tǒng)將采集到的圖像信息和機(jī)器人的實(shí)際位置聯(lián)系起來(lái),完成機(jī)器人的自主導(dǎo)航定位功能。

          2、光反射導(dǎo)航定位

          典型的光反射導(dǎo)航定位方法主要是利用激光或紅外傳感器來(lái)測(cè)距。激光和紅外都是利用光反射技術(shù)來(lái)進(jìn)行導(dǎo)航定位的。

          激光全局定位系統(tǒng)一般由激光器旋轉(zhuǎn)機(jī)構(gòu)、反射鏡、光電接收裝置和數(shù)據(jù)采集與傳輸裝置等部分組成。工作時(shí),激光經(jīng)過(guò)旋轉(zhuǎn)鏡面機(jī)構(gòu)向外發(fā)射,當(dāng)掃描到由后向反射器構(gòu)成的合作路標(biāo)時(shí),反射光經(jīng)光電接收器件處理作為檢測(cè)信號(hào),啟動(dòng)數(shù)據(jù)采集程序讀取旋轉(zhuǎn)機(jī)構(gòu)的碼盤數(shù)據(jù)(目標(biāo)的測(cè)量角度值),然后通過(guò)通訊傳遞到上位機(jī)進(jìn)行數(shù)據(jù)處理,根據(jù)已知路標(biāo)的位置和檢測(cè)到的信息,就可以計(jì)算出傳感器當(dāng)前在路標(biāo)坐標(biāo)系下的位置和方向,從而達(dá)到進(jìn)一步導(dǎo)航定位的目的。

          如圖是一個(gè)LDSR激光傳感器系統(tǒng)原理框圖。激光測(cè)距具有光束窄、平行性好、散射小、測(cè)距方向分辨率高等優(yōu)點(diǎn),但同時(shí)它也受環(huán)境因素干擾比較大,因此采用激光測(cè)距時(shí)怎樣對(duì)采集的信號(hào)進(jìn)行去噪等也是一個(gè)比較大的難題,另外激光測(cè)距也存在盲區(qū),所以光靠激光進(jìn)行導(dǎo)航定位實(shí)現(xiàn)起來(lái)比較困難,在工業(yè)應(yīng)用中,一般還是在特定范圍內(nèi)的工業(yè)現(xiàn)場(chǎng)檢測(cè),如檢測(cè)管道裂縫等場(chǎng)合應(yīng)用較多。

          紅外傳感技術(shù)經(jīng)常被用在多關(guān)節(jié)機(jī)器人避障系統(tǒng)中,用來(lái)構(gòu)成大面積機(jī)器人“敏感皮膚”,覆蓋在機(jī)器人手臂表面,可以檢測(cè)機(jī)器人手臂運(yùn)行過(guò)程中遇到的各種物體。典型的紅外傳感器工作原理如圖所示。該傳感器包括一個(gè)可以發(fā)射紅外光的固態(tài)發(fā)光二極管和一個(gè)用作接收器的固態(tài)光敏二極管。由紅外發(fā)光管發(fā)射經(jīng)過(guò)調(diào)制的信號(hào),紅外光敏管接收目標(biāo)物反射的紅外調(diào)制信號(hào),環(huán)境紅外光干擾的消除由信號(hào)調(diào)制和專用紅外濾光片保證。設(shè)輸出信號(hào)Vo代表反射光強(qiáng)度的電壓輸出,則Vo是探頭至工件間距離的函數(shù):

          Vo=f(x,p)

          式中,p—工件反射系數(shù)。p與目標(biāo)物表面顏色、粗糙度有關(guān)。x—探頭至工件間距離。

          當(dāng)工件為p值一致的同類目標(biāo)物時(shí),x和Vo一一對(duì)應(yīng)。x可通過(guò)對(duì)各種目標(biāo)物的接近測(cè)量實(shí)驗(yàn)數(shù)據(jù)進(jìn)行插值得到。這樣通過(guò)紅外傳感器就可以測(cè)出機(jī)器人距離目標(biāo)物體的位置,進(jìn)而通過(guò)其他的信息處理方法也就可以對(duì)移動(dòng)機(jī)器人進(jìn)行導(dǎo)航定位。

          雖然紅外傳感定位同樣具有靈敏度高、結(jié)構(gòu)簡(jiǎn)單、成本低等優(yōu)點(diǎn),但因?yàn)樗鼈兘嵌确直媛矢撸嚯x分辨率低,因此在移動(dòng)機(jī)器人中,常用作接近覺(jué)傳感器,探測(cè)臨近或突發(fā)運(yùn)動(dòng)障礙,便于機(jī)器人緊急停障。

          3、GPS全球定位系統(tǒng)

          如今,在智能機(jī)器人的導(dǎo)航定位技術(shù)應(yīng)用中,一般采用偽距差分動(dòng)態(tài)定位法,用基準(zhǔn)接收機(jī)和動(dòng)態(tài)接收機(jī)共同觀測(cè)4顆GPS衛(wèi)星,按照一定的算法即可求出某時(shí)某刻機(jī)器人的三維位置坐標(biāo)。差分動(dòng)態(tài)定位消除了星鐘誤差,對(duì)于在距離基準(zhǔn)站1000km的用戶,可以消除星鐘誤差和對(duì)流層引起的誤差,因而可以顯著提高動(dòng)態(tài)定位精度。但是因?yàn)樵谝苿?dòng)導(dǎo)航中,移動(dòng)GPS接收機(jī)定位精度受到衛(wèi)星信號(hào)狀況和道路環(huán)境的影響,同時(shí)還受到時(shí)鐘誤差、傳播誤差、接收機(jī)噪聲等諸多因素的影響,因此,單純利用 GPS導(dǎo)航存在定位精度比較低、可靠性不高的問(wèn)題,所以在機(jī)器人的導(dǎo)航應(yīng)用中通常還輔以磁羅盤、光碼盤和GPS的數(shù)據(jù)進(jìn)行導(dǎo)航。另外,GPS導(dǎo)航系統(tǒng)也不適應(yīng)用在室內(nèi)或者水下機(jī)器人的導(dǎo)航中以及對(duì)于位置精度要求較高的機(jī)器人系統(tǒng)。

          4、超聲波導(dǎo)航定位

          超聲波導(dǎo)航定位的工作原理也與激光和紅外類似,通常是由超聲波傳感器的發(fā)射探頭發(fā)射出超聲波,超聲波在介質(zhì)中遇到障礙物而返回到接收裝置。通過(guò)接收自身發(fā)射的超聲波反射信號(hào),根據(jù)超聲波發(fā)出及回波接收時(shí)間差及傳播速度,計(jì)算出傳播距離S,就能得到障礙物到機(jī)器人的距離,即有公式:S=Tv/2式中,T— 超聲波發(fā)射和接收的時(shí)間差;v—超聲波在介質(zhì)中傳播的波速。

          當(dāng)然,也有不少移動(dòng)機(jī)器人導(dǎo)航定位中用到的是分開(kāi)的發(fā)射和接收裝置,在環(huán)境地圖中布置多個(gè)接收裝置,而在移動(dòng)機(jī)器人上安裝發(fā)射探頭。

          在移動(dòng)機(jī)器人的導(dǎo)航定位中,因?yàn)槌暡▊鞲衅髯陨淼娜毕荩纾虹R面反射、有限的波束角等,給充分獲得周邊環(huán)境信息造成了困難,因此,通常采用多傳感器組成的超聲波傳感系統(tǒng),建立相應(yīng)的環(huán)境模型,通過(guò)串行通信把傳感器采集到的信息傳遞給移動(dòng)機(jī)器人的控制系統(tǒng),控制系統(tǒng)再根據(jù)采集的信號(hào)和建立的數(shù)學(xué)模型采取一定的算法進(jìn)行對(duì)應(yīng)數(shù)據(jù)處理便可以得到機(jī)器人的位置環(huán)境信息。

          由于超聲波傳感器具有成本低廉、采集信息速率快、距離分辨率高等優(yōu)點(diǎn),長(zhǎng)期以來(lái)被廣泛地應(yīng)用到移動(dòng)機(jī)器人的導(dǎo)航定位中。而且它采集環(huán)境信息時(shí)不需要復(fù)雜的圖像配備技術(shù),因此測(cè)距速度快、實(shí)時(shí)性好。同時(shí),超聲波傳感器也不易受到如天氣條件、環(huán)境光照及障礙物陰影、表面粗糙度等外界環(huán)境條件的影響。超聲波進(jìn)行導(dǎo)航定位已經(jīng)被廣泛應(yīng)用到各種移動(dòng)機(jī)器人的感知系統(tǒng)中。

          三、路徑規(guī)劃

          路徑規(guī)劃技術(shù)是機(jī)器人研究領(lǐng)域的一個(gè)重要分支。最優(yōu)路徑規(guī)劃就是依據(jù)某個(gè)或某些優(yōu)化準(zhǔn)則(如工作代價(jià)最小、行走路線最短、行走時(shí)間最短等),在機(jī)器人工作空間中找到一條從起始狀態(tài)到目標(biāo)狀態(tài)、可以避開(kāi)障礙物的最優(yōu)路徑。

          移動(dòng)機(jī)器人路徑規(guī)劃技術(shù)大概分為以下4類:模版匹配路徑規(guī)劃技術(shù)、人工勢(shì)場(chǎng)路徑規(guī)劃技術(shù)、地圖構(gòu)建路徑規(guī)劃技術(shù)和人工智能路徑規(guī)劃技術(shù)。

          1.模版匹配路徑規(guī)劃技術(shù)

          模版匹配方法是將機(jī)器人當(dāng)前狀態(tài)與過(guò)去經(jīng)歷相比較,找到最接近的狀態(tài),修改這一狀態(tài)下的路徑,便可得到一條新的路徑,即首先利用路徑規(guī)劃所用到的或已產(chǎn)生的信息建立一個(gè)模版庫(kù),庫(kù)中的任一模版包含每一次規(guī)劃的環(huán)境信息和路徑信息,這些模版可通過(guò)特定的索引取得;隨后將當(dāng)前規(guī)劃任務(wù)和環(huán)境信息與模版庫(kù)中的模版進(jìn)行匹配,以尋找出一個(gè)最優(yōu)匹配模版;然后對(duì)該模版進(jìn)行修正,并以此作為最后的結(jié)果,模版匹配技術(shù)在環(huán)境確定情況下,有較好的應(yīng)用效果,如 Vasudevan等提出的基于案例的自治水下機(jī)器人(AUV) 路徑規(guī)劃方法,Liu等提出的清潔機(jī)器人的模版匹配路徑規(guī)劃方法,為了提高模版匹配路徑規(guī)劃技術(shù)對(duì)環(huán)境變化的適應(yīng)性,部分學(xué)者提出了將模版匹配與神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)相結(jié)合的方法,如Ram等將基于事例的在線匹配和增強(qiáng)式學(xué)習(xí)相結(jié)合,提高了模版匹配規(guī)劃方法中機(jī)器人的自適應(yīng)性能,使機(jī)器人能部分地適應(yīng)環(huán)境的變化,以及Arleo等將環(huán)境模版與神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)相結(jié)合的路徑規(guī)劃方法等。

          2.人工勢(shì)場(chǎng)路徑規(guī)劃技術(shù)

          人工勢(shì)場(chǎng)路徑規(guī)劃技術(shù)的基本思想是將機(jī)器人在環(huán)境中的運(yùn)動(dòng)視為一種機(jī)器人在虛擬的人工受力場(chǎng)中的運(yùn)動(dòng)。障礙物對(duì)機(jī)器人產(chǎn)生斥力,目標(biāo)點(diǎn)對(duì)機(jī)器人產(chǎn)生引力,引力和斥力的合力作為機(jī)器人的控制力,從而控制機(jī)器人避開(kāi)障礙物而到達(dá)目標(biāo)位置。

          早期人工勢(shì)場(chǎng)路徑規(guī)劃研究是一種靜態(tài)環(huán)境的人工勢(shì)場(chǎng),即將障礙物和目標(biāo)物均看成是靜態(tài)不變的,機(jī)器人僅根據(jù)靜態(tài)環(huán)境中障礙物和目標(biāo)物的具體位置規(guī)劃運(yùn)動(dòng)路徑,不考慮它們的移動(dòng)速度。然而,現(xiàn)實(shí)世界中的環(huán)境往往是動(dòng)態(tài)的,障礙物和目標(biāo)物都可能是移動(dòng)的,為了解決動(dòng)態(tài)環(huán)境中機(jī)器人的路徑規(guī)劃問(wèn)題,F(xiàn)ujimura等提出一種相對(duì)動(dòng)態(tài)的人工勢(shì)場(chǎng)方法,將時(shí)間看成規(guī)劃模型的一維參量,而移動(dòng)的障礙物在擴(kuò)展的模型中仍被看成是靜態(tài)的,這樣動(dòng)態(tài)路徑規(guī)劃仍可運(yùn)用靜態(tài)路徑規(guī)劃方法加以實(shí)現(xiàn)。該方法存在的主要問(wèn)題是假設(shè)機(jī)器人的軌跡總是已知的,但這一點(diǎn)在現(xiàn)實(shí)世界中難以實(shí)現(xiàn),對(duì)此,Ko等將障礙物的速度參量引入到斥力勢(shì)函數(shù)的構(gòu)造中,提出動(dòng)態(tài)環(huán)境中的路徑規(guī)劃策略,并給出了仿真結(jié)果,但是,該方法的兩個(gè)假設(shè)使其與實(shí)際的動(dòng)態(tài)環(huán)境存在距離:(1)僅考慮環(huán)境中障礙物的運(yùn)動(dòng)速度,未考慮機(jī)器人的運(yùn)動(dòng)速度;(2)認(rèn)為障礙物與機(jī)器人之間的相對(duì)速度是固定不變的,這不是完整的動(dòng)態(tài)環(huán)境。對(duì)于動(dòng)態(tài)路徑規(guī)劃問(wèn)題來(lái)說(shuō),與機(jī)器人避障相關(guān)的主要是機(jī)器人與障礙物之間的相對(duì)位置和相對(duì)速度,而非絕對(duì)位置和速度,對(duì)此,Ge等將機(jī)器人與目標(biāo)物的相對(duì)位置與相對(duì)速度引入吸引勢(shì)函數(shù),將機(jī)器人與障礙物的相對(duì)位置與相對(duì)速度引入排斥勢(shì)函數(shù),提出動(dòng)態(tài)環(huán)境下的機(jī)器人路徑規(guī)劃算法,并將該算法應(yīng)用于全方位足球移動(dòng)機(jī)器人的路徑規(guī)劃中,取得了比較滿意的仿真與實(shí)驗(yàn)結(jié)果。

          3.地圖構(gòu)建路徑規(guī)劃技術(shù)

          地圖構(gòu)建路徑規(guī)劃技術(shù),是按照機(jī)器人自身傳感器搜索的障礙物信息,將機(jī)器人周圍區(qū)域劃分為不同的網(wǎng)格空間(如自由空間和限制空間等),計(jì)算網(wǎng)格空間的障礙物占有情況,再依據(jù)一定規(guī)則確定最優(yōu)路徑,地圖構(gòu)建又分為路標(biāo)法和柵格法,也稱單元分解法。前者是構(gòu)造一幅由標(biāo)志點(diǎn)和連接邊線組成的機(jī)器人可行路徑圖,如可視線方法、切線圖方法、Voronoi圖方法和概率圖展開(kāi)法等。

          可視圖法將機(jī)器人看成一個(gè)點(diǎn),機(jī)器人、目標(biāo)點(diǎn)和多邊形障礙物的各頂點(diǎn)進(jìn)行組合連接,并保證這些直線均不與障礙物相交,便形成一張圖,稱為可視圖,由于任意兩直線的頂點(diǎn)都是可見(jiàn)的,從起點(diǎn)沿著這些直線到達(dá)目標(biāo)點(diǎn)的所有路徑均是運(yùn)動(dòng)物體的無(wú)碰路徑,路徑規(guī)劃就是搜索從起點(diǎn)到目標(biāo)點(diǎn)經(jīng)過(guò)這些可視直線的最短距離問(wèn)題;切線圖法和Voronoi圖法對(duì)可視圖法進(jìn)行了改造,切線圖法以多邊形障礙物模型為基礎(chǔ),任意形狀障礙物用近似多邊形替代,在自由空間中構(gòu)造切線圖,因此從起始點(diǎn)到目標(biāo)點(diǎn)機(jī)器人是沿著切線行走,即機(jī)器人必須幾乎接近障礙物行走,路徑較短,但如果控制過(guò)程中產(chǎn)生位置誤差,移動(dòng)機(jī)器人碰撞的可能性會(huì)很高,Voronoi圖由一系列的直線段和拋物線段構(gòu)成,直線由兩個(gè)障礙物的頂點(diǎn)或兩個(gè)障礙物的邊定義生成,直線段上所有點(diǎn)必須距離障礙物的頂點(diǎn)或障礙物的邊相等,拋物線段由一個(gè)障礙物的頂點(diǎn)和一個(gè)障礙物的邊定義生成,拋物線段同樣要求與障礙物頂點(diǎn)和障礙物的邊有相同距離,與切線法相比,Voronoi圖法從起始節(jié)點(diǎn)到目標(biāo)節(jié)點(diǎn)的路徑將會(huì)增長(zhǎng),但采用這種控制方式時(shí),即使產(chǎn)生位置誤差,移動(dòng)機(jī)器人也不會(huì)碰到障礙物,安全性較高,下圖為切線圖法與Voronoi圖法示意圖。

          切線圖法與Voronoi圖法

          柵格法是將機(jī)器人周圍空間分解為相互連接且不重疊的空間單元;柵格(cell),由這些柵格構(gòu)成一個(gè)連通圖,依據(jù)障礙物占有情況,在此圖上搜索一條從起始柵格到目標(biāo)柵格無(wú)碰撞的最優(yōu)路徑.這其中根據(jù)柵格處理方法的不同,又分為精確柵格法和近似柵格法,后者也稱概率柵格法。精確柵格法是將自由空間分解成多個(gè)不重疊的單元,這些單元的組合與原自由空間精確相等,如下圖就是常用的一種精確柵格分解法一一梯形柵格分解。

          與精確柵格法不同,近似柵格法的所有柵格都是預(yù)定的形狀,通常為矩形,整個(gè)環(huán)境被分割成多個(gè)較大的矩形,每個(gè)矩形之間都是連續(xù)的,典型的方法是“四叉樹(shù)”法,如果大矩形內(nèi)部包含障礙物或者邊界,則將其分割成4個(gè)小矩形,對(duì)所有稍大的柵格都進(jìn)行這種劃分,然后在劃分的最后界限內(nèi)形成的小柵格間重復(fù)執(zhí)行該程序,直到達(dá)到解的界限為止。

          地圖構(gòu)建法直觀明了,它常與其他路徑規(guī)劃方法集成使用,如Araujo提出的ART神經(jīng)網(wǎng)絡(luò)的地圖構(gòu)建路徑規(guī)劃算法,Najjaran提出的卡爾曼濾波器的地圖構(gòu)建路徑規(guī)劃,Yang等提出的基于生物啟發(fā)神經(jīng)網(wǎng)絡(luò)與地圖構(gòu)建集成的清潔機(jī)器人完全覆蓋路徑規(guī)劃技術(shù)(CCPP)等。

          目前,地圖構(gòu)建技術(shù)已引起機(jī)器人研究領(lǐng)域的廣泛關(guān)注,成為移動(dòng)機(jī)器人路徑規(guī)劃的研究熱點(diǎn)之一,但機(jī)器人傳感器信息資源有限,使得網(wǎng)格地圖障礙物信息很難計(jì)算與處理,同時(shí)由于機(jī)器人要?jiǎng)討B(tài)快速地更新地圖數(shù)據(jù),在網(wǎng)格數(shù)較多、分辨率較高時(shí)難以保證路徑規(guī)劃的實(shí)時(shí)性,因此,地圖構(gòu)建方法必須在地圖網(wǎng)格分辨率與路徑規(guī)劃實(shí)時(shí)性上尋求平衡。

          4.人工智能路徑規(guī)劃技術(shù)

          人工智能路徑規(guī)劃技術(shù)是將現(xiàn)代人工智能技術(shù)應(yīng)用于移動(dòng)機(jī)器人的路徑規(guī)劃中,如人工神經(jīng)網(wǎng)絡(luò)、進(jìn)化計(jì)算、模糊邏輯與信息融合等。遺傳算法是最早應(yīng)用于組合優(yōu)化問(wèn)題的智能優(yōu)化算法,該算法及其派生算法在機(jī)器人路徑規(guī)劃研究領(lǐng)域已得到應(yīng)用,在蟻群算法較好解決旅行商問(wèn)題(TSP)的基礎(chǔ)上,許多學(xué)者進(jìn)一步將蟻群優(yōu)化算法引入到水下機(jī)器人(UV)的路徑規(guī)劃研究中。

          神經(jīng)網(wǎng)絡(luò)作為人工智能的重要內(nèi)容,在移動(dòng)機(jī)器人路徑規(guī)劃研究中得到了廣泛關(guān)注,如Ghatee等將Hopfield神經(jīng)網(wǎng)絡(luò)應(yīng)用到路徑距離的優(yōu)化中;Zhu等將自組織SOM神經(jīng)網(wǎng)絡(luò)應(yīng)用到多任務(wù)多機(jī)器人的任務(wù)分配與路徑規(guī)劃中,近年來(lái)加拿大學(xué)者Simon提出一種新的生物啟發(fā)動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)模型,將神經(jīng)網(wǎng)絡(luò)的神經(jīng)元與二維規(guī)劃空間的離散坐標(biāo)對(duì)應(yīng)起來(lái),通過(guò)規(guī)定障礙物和非障礙物對(duì)神經(jīng)元輸入激勵(lì)和抑制的不同,直接計(jì)算相關(guān)神經(jīng)元的輸出,由此判定機(jī)器人的運(yùn)行方向,由于該神經(jīng)網(wǎng)絡(luò)不需要學(xué)習(xí)訓(xùn)練過(guò)程,路徑規(guī)劃實(shí)時(shí)性好,同時(shí)利用神經(jīng)網(wǎng)絡(luò)本身的快速衰減特性,較好地解決了機(jī)器人路徑規(guī)劃的死區(qū)問(wèn)題。如圖為用于局部路徑規(guī)劃的生物啟發(fā)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖,圖中所示為機(jī)器人(處于神經(jīng)元處)傳感器的感受半徑,每個(gè)神經(jīng)元與環(huán)境位置坐標(biāo)對(duì)應(yīng),動(dòng)態(tài)計(jì)算機(jī)器人鄰近神經(jīng)元輸出,機(jī)器人根據(jù)神經(jīng)元輸出大小決定下一步運(yùn)行目標(biāo),從而實(shí)現(xiàn)安全的路徑規(guī)劃。

          人工智能技術(shù)應(yīng)用于移動(dòng)機(jī)器人路徑規(guī)劃,增強(qiáng)了機(jī)器人的“智能”特性,克服了許多傳統(tǒng)規(guī)劃方法的不足,但該方法也有不足之處,有關(guān)遺傳優(yōu)化與蟻群算法路徑規(guī)劃技術(shù)主要針對(duì)路徑規(guī)劃中的部分問(wèn)題,利用進(jìn)化計(jì)算進(jìn)行優(yōu)化處理,并與其他路徑規(guī)劃方法結(jié)合在一起使用,單獨(dú)完成路徑規(guī)劃任務(wù)的情況較少。信息融合技術(shù)主要應(yīng)用于機(jī)器人傳感器信號(hào)處理方面,而非直接的路徑規(guī)劃策略,對(duì)神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃而言,大多數(shù)神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃均存在規(guī)劃知識(shí)的學(xué)習(xí)過(guò)程,不僅存在學(xué)習(xí)樣本難以獲取,而且存在學(xué)習(xí)滯后問(wèn)題,從而影響神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃的實(shí)時(shí)性,生物啟發(fā)神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃雖然實(shí)時(shí)性較好,但其輸入激勵(lì)與抑制的設(shè)定也存在人為不確定因素。

          基于生物啟發(fā)神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃

          此外,智能機(jī)器人還用到機(jī)器人視覺(jué)、智能控制、人機(jī)接口技術(shù)等多種技術(shù),小編就不一一贅述了,大家可以搜尋相關(guān)資料,一起分享哦。



          關(guān)鍵詞: 智能機(jī)器人

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();