如何在MCU內(nèi)完成一次ADC?
STM32的優(yōu)點在哪里?除去宣傳環(huán)節(jié),細細分析,STM32時鐘不算快,72MHZ,也不能擴展大容量的RAM FLASH,同樣沒有DSP那樣強大的指令集。它的優(yōu)勢在哪里呢?
本文引用地址:http://www.ex-cimer.com/article/201805/380662.htm---就在快速采集數(shù)據(jù),快速處理上。
ARM的特點就是方便?!∵@個快速采集,高性能的ADC就是一個很好的體現(xiàn),12位精度,最快1uS的轉(zhuǎn)換速度,通常具備2個以上獨立的ADC控制器,這意味著,STM32可以同時對多個模擬量進行快速采集,這個特性不是一般的MCU具有的。以上高性能的ADC,配合相對比較塊的指令集和一些特色的算法支持,就構(gòu)成了STM32在電機控制上的強大特性。
好了,正題,怎么做一個簡單的ADC?
注意是簡單的,ADC是個復(fù)雜的問題,涉及硬件設(shè)計,電源質(zhì)量,參考電壓,信號預(yù)處理等等問題。我們只就如何在MCU內(nèi)完成一次ADC作討論。
談到ADC,我們還要第一次引入另外一個重要的設(shè)備DMA。DMA是什么東西呢。
通常在8位單片機時代,很少有這個概念。在外置資源越來越多以后,我們把一個MCU內(nèi)部分為 主處理器 和 外設(shè)兩個部分。主處理器當(dāng)然是執(zhí)行我們指令的主要部分,外設(shè)則是 串口 I2C ADC 等等用來實現(xiàn)特定功能的設(shè)備,回憶一下,8位時代,我們的主處理器最常干的事情是什么?邏輯判斷?不是。那才幾個指令計算算法?不是。大部分時候算法都很簡單?!∈聦嵣?,主處理器就是作個搬運工,
把USART的數(shù)據(jù)接收下來,存起來
把ADC的數(shù)據(jù)接收下來,存起來
把要發(fā)送的數(shù)據(jù),存起來,一個個的往USART里放。
…………
為了解決這個矛盾,人們想到一個辦法,讓外設(shè)和內(nèi)存間建立一個通道,在主處理器允許下,讓外設(shè)和內(nèi)存直接 讀寫,這樣就釋放了主處理器,這個東西就是DMA。
打個比方:
一個MCU是個公司。老板就是主處理器員工是外設(shè),倉庫就是內(nèi)存.
從前 倉庫的東西都是老板管的。員工需要原料工作,就一個個報給老板,老板去倉庫里一個一個拿。員工作好的東西,一個個給老板,老板一個個放進倉庫里。老板很累,雖然老板是超人,也受不了越來越多的員工和單子。
最后老板雇了一個倉庫保管員,它就是DMA
他專門負(fù)責(zé) 入庫和出庫,只需要把出庫 和入庫計劃給老板過目老板說OK,就不管了。
后面的入庫和出庫過程,員工只需要和這個倉庫保管員打交道就可以了。
--------閑話,馬七時常想,讓設(shè)備與設(shè)備之間開DMA,豈不更牛X,比喻完成。
ADC是個高速設(shè)備,前面提到。而且ADC采集到的數(shù)據(jù)是不能直接用的。即使你再小心的設(shè)計外圍電路,測的離譜的數(shù)據(jù)總會出現(xiàn)。那么通常來說,是采集一批數(shù)據(jù),然后進行處理,這個過程就是軟件濾波。
DMA用到這里就很合適。讓ADC高速采集,把數(shù)據(jù)填充到RAM中,填充一定數(shù)量,比如32個,64個MCU再來使用。
-----多一句,也可以說,單次ADC毫無意義。
下面我們來具體介紹,如何使用DMA來進行ADC操作。初始化函數(shù)包括兩部分,DMA初始化和 ADC初始化我們有多個管理員--DMA,一個管理員當(dāng)然不止管一個DMA操作。所以DMA有多個Channel
//ADC with DMA Init
#define ADC_Channel ADC_Channel0
#define ADC1_DR_Address ((u32)0x4001244C)
void ADCWithDMAInit()
{
//DMA init; Using DMA channel 1
DMA_DeInit(DMA1_Channel1); //開啟DMA1的第一通道
DMA_InitStruct.DMA_PeripheralBaseAddr = ADC1_DR_Address; //DMA對應(yīng)的外設(shè)基地址,這個地址走Datasheet查
DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //轉(zhuǎn)換結(jié)果的數(shù)據(jù)大小
DMA_InitStruct.DMA_MemoryBaseAddr = (unsigned long)&ADC_ConvertedValue; //
DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralSRC; //DMA的轉(zhuǎn)換模式是SRC模式,就是從外設(shè)向內(nèi)存中搬運,
DMA_InitStruct.DMA_M2M = DMA_M2M_Disable; //M2M模式禁止,memory to memory,這里暫時用不上,以后介
紹
DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; //DMA搬運的數(shù)據(jù)尺寸,注意ADC是12位的,
HalfWord就是16位
DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Disable; //接收一次數(shù)據(jù)后,目標(biāo)內(nèi)存地址是否后移--重
要概念,用來采集多個數(shù)據(jù)的
DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //接收一次數(shù)據(jù)后,設(shè)備地址是否后移
DMA_InitStruct.DMA_Mode = DMA_Mode_Circular; //轉(zhuǎn)換模式,循環(huán)緩存模式,常用,M2M果果開啟了,這個模式失效
。
DMA_InitStruct.DMA_Priority = DMA_Priority_High; //DMA優(yōu)先級,高
DMA_InitStruct.DMA_BufferSize = 1; //DMA緩存大小,1個
DMA_Init(DMA1_Channel1,&DMA_InitStruct);
// Enable DMA1
DMA_Cmd(DMA1_Channel1, ENABLE);
}
void ADCx_Init(unsigned char ADC_Channel)
{
ADC_DeInit(ADC1); //開啟ADC1
ADC_InitStruct.ADC_Mode = ADC_Mode_Independent; //轉(zhuǎn)換模式,為獨立轉(zhuǎn)換。轉(zhuǎn)換模式太多了,以后深究
ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right; //對齊方式,ADC結(jié)果是12位的,顯然有個對齊左邊還是右邊
的問題。一般是右對齊
ADC_InitStruct.ADC_ConTInuousConvMode = ENABLE; //連續(xù)轉(zhuǎn)換模式開啟
ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //ADC外部出發(fā)開關(guān),關(guān)閉
ADC_InitStruct.ADC_NbrOfChannel = 2; //開啟通道數(shù),2個
ADC_InitStruct.ADC_ScanConvMode = ENABLE; //掃描轉(zhuǎn)換模式開啟
ADC_Init(ADC1, &ADC_InitStruct);
ADC_RegularChannelConfig(ADC1, ADC_Channel, 1, ADC_SampleTIme_239Cycles5); //規(guī)則組通道設(shè)置,關(guān)鍵函數(shù) 轉(zhuǎn)
換器ADC1,選擇哪個通道channel,規(guī)則采樣順序,1到16,以后解釋詳細含義,最后一個參數(shù)是轉(zhuǎn)換時間,越長越準(zhǔn)越穩(wěn)定
// ADC1 to DMA, Enable
ADC_DMACmd(ADC1, ENABLE); //ADC命令,和DMA關(guān)聯(lián)。
//ADC1 Enable
ADC_Cmd(ADC1,ENABLE); //開啟ADC1
//Reset the CalibraTIon of ADC1
ADC_ResetCalibraTIon(ADC1); //重置校準(zhǔn)
//wait until the Calibration‘s finish
while(ADC_GetResetCalibrationStatus(ADC1)) //等待重置校準(zhǔn)完成
;
ADC_StartCalibration(ADC1); //開始校準(zhǔn)
while(ADC_GetCalibrationStatus(ADC1)) //等待校準(zhǔn)完成
;
ADC_SoftwareStartConvCmd(ADC1, ENABLE); //連續(xù)轉(zhuǎn)換開始,從選擇開始,MCU可以不用管了,ADC將通過DMA不斷刷新
制定RAM區(qū)
// Attach them;
}
最后講講濾波算法
濾波的方法以后會開個專題。
特別提一下---沒有完美的濾波算法,只有合適的濾波算法。
需要綜合考慮信號特點,噪聲特點,控制對象等等,
這里用個最簡單的濾波算法,均值濾波。
采樣16次,取平均值,吼吼,在豆皮上跳動還是蠻小的,合適,吼吼
//16ms finish a ADC detection
// return mv
unsigned int ADC_filter(void)
{
unsigned int result=“0”;
unsigned char i;
for(i=16;i》0;i--)
{
Delay_xms(1);
result += ADC_ConvertedValue;
}
return (unsigned int)(((unsigned long)(result》》4))*3300》》12);
}
評論