<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 消費電子 > 設(shè)計應(yīng)用 > 深度學(xué)習(xí)基礎(chǔ)概念筆記

          深度學(xué)習(xí)基礎(chǔ)概念筆記

          作者: 時間:2018-07-25 來源:網(wǎng)絡(luò) 收藏

          本文引用地址:http://www.ex-cimer.com/article/201807/383751.htm

          我們都知道,函數(shù)某個位置可導(dǎo),那么就可以確定這個點的斜率。要找到局部最小值,可以根據(jù)這個點的斜率移動 w。如根據(jù)此時斜率的值我們可以確定 w 應(yīng)該向右移動一段距離。

          此時移動 w 的距離稱為步長。步長的選取很關(guān)鍵,如果步長過長,那么每次 w 偏移過大,永遠(yuǎn)都找不到真正的最小值。而如果步長選取過小,那么收斂會變得很慢,而且有可能在中間某段平滑處停下來,找到的也不是真正的最小值。而步長怎么選擇呢?其實比較坑爹,某些時候有經(jīng)驗值,大部分時候則只能自己調(diào)整去試驗。

          在學(xué)習(xí)的過程中,遇到的最常見的一個問題是走不動了。比如在下圖中。從 A 點走到 B 點,B 點由于斜率平滑,慢慢走到了 C 點,這時候可能 C 點斜率是平滑了,那么 w 將無法繼續(xù)往下走,永遠(yuǎn)停留在 C 點!這樣得到的神經(jīng)網(wǎng)絡(luò)的誤差 L 顯然不是最小的,權(quán)值 w 也不是最佳的。

          因此,在神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)過程中,常用的做法是模擬物理世界引入一個動量球。假設(shè)每次的移動看成 是一個動量球的移動。在移動過程中,動量球先從最高點往下走,雖然下載下來后斜率減少,但是由于動量球?qū)⒁苿酉聛淼闹亓菽苻D(zhuǎn)變的動能,它會繼續(xù)往下走,從而移動過平緩區(qū)。當(dāng)動量球到達(dá)某個局部最低點的時候,動量球會依靠自己的動能繼續(xù)滾動,設(shè)法尋找到下一個局部最低點。當(dāng)然,動量球不是萬能的,它也可能會遇到山坡上不去最終滑下來停留在某個局部最小值(并不是真正的最小值)。但是動量球的引入,大大增加了學(xué)習(xí)過程的魯棒性,擴(kuò)寬了局部最小值的尋找范圍。

          實際上,借助理解神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)的過程,我們會更加理解為什么深度越高的網(wǎng)絡(luò)不一定就越好。對于深度越高的神經(jīng)網(wǎng)絡(luò),平滑區(qū)會越來越多,局部最小點也會越來越多。沒有合適的算法,很容易就陷入某個局部最小值里面去,而這個最小值可能還不如深度更淺的神經(jīng)網(wǎng)絡(luò)獲得的局部最小值小。也就是說,神經(jīng)網(wǎng)絡(luò)復(fù)雜之后,對架構(gòu)和算法的要求大大加高。

          卷積

          如果對卷積這個數(shù)學(xué)概念還沒有了解,可以先看知乎這里通俗的解釋。

          怎樣通俗易懂地解釋卷積?

          如果沒有做過圖像處理,還需要先看看卷積核,感受一下它的神奇。

          圖像卷積與濾波的一些知識點

          以圖片的卷積為例,深度學(xué)習(xí)中的卷積計算就是使用卷積核遍歷一張圖片的過程。

          根據(jù)對于邊緣的處理不同,卷積分為相同填充和有效填充兩種方法。相同填充中,超出邊界的部分使用補充 0 的方法,使得輸入和輸出的圖像尺寸相同。而在有效填充中,則不使用補充 0 的方法,因此輸出的尺寸會比輸入尺寸小一些。

          例 1:3*3 的卷積核在 5*5 的圖像上進(jìn)行有效填充的卷積過程

          例 2. 兩個 3*3*3 卷積核在 5*5 圖像上進(jìn)行相同填充卷積過程。動圖

          圖像有 r,g,b 三個通道。這里使用卷積核也分為 3 個通道分別進(jìn)行卷積運算

          池化

          池化是卷積神經(jīng)網(wǎng)絡(luò)中用到的一種運算。在卷積神經(jīng)網(wǎng)絡(luò)中,卷積層后面一般是池化層。先進(jìn)行卷積運算,再進(jìn)行池化運算。

          池化層在神經(jīng)網(wǎng)絡(luò)中起到的是降低參數(shù)和計算量,引入不變形的作用。

          池化常用的是兩種,一種是 Avy Pooling,一種是 Max Pooling。下圖是 Max Pooling 的示意圖,可以看到分別找的是 2*2 矩陣中的最大值,Avy Pooling 則是將矩陣所有值加起來,求平均值。


          上一頁 1 2 下一頁

          關(guān)鍵詞: 感知器

          評論


          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();