關(guān)于鋰離子電池漿料的理論知識(上)
一、膠體理論
本文引用地址:http://www.ex-cimer.com/article/201807/384483.htm導(dǎo)致膠體粒子團(tuán)聚的主要作用,是來自粒子間的范德華力,若要增加膠體粒子穩(wěn)定性,則由兩個(gè)途徑,一是增加膠體粒子間的靜電排斥力,二為使粉體間產(chǎn)生空間位阻,以這兩種方式阻絕粉體的團(tuán)聚。
最簡單的膠體系統(tǒng)系由一分散相與一相分散媒介所構(gòu)成,其中分散相尺度范圍于10-9~10-6m間。膠體內(nèi)的物質(zhì)存在于系統(tǒng)內(nèi)需具有一定程度以上的分散能力。根據(jù)溶劑與分散相的不同而可產(chǎn)生多種不同的膠體型態(tài),如:霧氣即為液滴分散于氣體中之氣膠、牙膏即固態(tài)高分子微粒分散在液體中的溶膠。
膠體的應(yīng)用在生活中比比皆是,而膠體的物理特性需視分散相與分散介質(zhì)的不同而有所差異。從微觀角度觀察膠體,膠體粒子并非處于恒定狀態(tài),而是在介質(zhì)內(nèi)隨機(jī)運(yùn)動,這便是我們所稱的布朗運(yùn)動(Brownian motion)。絕對零度以上,膠體粒子均會因熱運(yùn)動而發(fā)生布朗運(yùn)動,這便是微觀膠體的動力學(xué)特性。膠體粒子因布朗運(yùn)動而產(chǎn)生碰撞,是為團(tuán)聚(aggregate)發(fā)生的契機(jī),而膠體粒子在熱力學(xué)上處于不穩(wěn)定狀態(tài),因而粒子間的交互作用力為分散的關(guān)鍵因素之一。
1-1,膠體動力學(xué)性質(zhì)
布朗運(yùn)動起始自19 世紀(jì)初,植物學(xué)家布朗由顯微鏡觀察到花粉粒子在水中的不規(guī)則運(yùn)動得名。粒子因溫度而造成布朗運(yùn)動后將產(chǎn)生碰撞行為,由粒子表面的范德華力引起團(tuán)聚現(xiàn)象。膠體的凝聚速率與以下兩者有密切的關(guān)系:
1)膠體粒子間彼此碰撞的頻率,
2)粒子經(jīng)碰撞后,產(chǎn)生的熱能是否足以克服膠體間的排斥能量。
Smoluchowski 提出膠體快速凝聚理論,是由濃度差造成擴(kuò)散速率所控制。
膠體粒子團(tuán)聚的速率為:
n表示在時(shí)間t時(shí),單位體積溶液所含的膠體粒子數(shù),k2為二次反應(yīng)速率常數(shù)(second-order rate constant)。
由于團(tuán)聚使得溶液中的膠體粒子濃度減少,因此以表示為負(fù)號。當(dāng)t=0,n=n0, 積分上式可得:
膠體部分團(tuán)聚后,由于排斥能障將隨粒子的粒徑增加而成長,溶液將達(dá)到平衡,使得凝聚速率下降。假設(shè)膠體粒子為單一粒徑,并只考慮兩粒子間的碰撞時(shí):
a為膠體粒子半徑,D為布朗擴(kuò)散系數(shù),假設(shè)為球形粒子,由愛因斯坦擴(kuò)散定律,可得:
將(4)代入(3)后,n 代入(2)式化簡得到:
K02為擴(kuò)散速率拉制時(shí)的膠體凝聚速率(不考慮能障時(shí)的速率常數(shù)),μf 為水溶液黏度。并由(1)及(5)式可計(jì)算出團(tuán)聚時(shí)間tF為:
1-2, 雙電層理論
雙電層理論可用以解釋膠體中帶電離子的分布情形,以及粒子表面所產(chǎn)生的電位問題。19 世紀(jì)Helmholtz 提出平行電容器模型以描述雙電層結(jié)構(gòu),簡單的假設(shè)粒子帶負(fù)電,且表面如同電容器中的電極,溶液中帶正電的反離子因異電荷相吸而吸附在粒子表面。然而這個(gè)理論卻忽略了帶電離子會因熱運(yùn)動產(chǎn)生擴(kuò)散行為。
因此,在20世紀(jì)初Gouy與Chapman 提出擴(kuò)散雙電層模型,在溶液中的反離子會因靜電作用吸附于帶電粒子表面,同時(shí)受熱運(yùn)動影響而在粒子周圍擴(kuò)散。因此,反離子在溶液中的分布濃度將隨粒子表面的距離增加而下降。1924 年,史特恩(Stern)將平行電容器與擴(kuò)散雙電層兩種模型加以結(jié)合,以描述雙電層結(jié)構(gòu)。Stern認(rèn)為反離子會在粒子表面形成緊密的吸附層,亦稱Stern layer,隨著與粒子表面距離增加,粒子的電位會呈現(xiàn)線性下降,同時(shí)Stern layer外亦有擴(kuò)散層的存在,并且粒子于擴(kuò)散層中的電位會隨距離增加而指數(shù)下降。
下圖為Stern雙電層模型,zeta電位(ξ,Zeta potential)為雙電層模型中極重要的參數(shù),實(shí)際測量時(shí)并無法直接測得粒子的表面電位,但可由聲波法或是電泳法計(jì)算出粒子的zeta電位。雙電層模型中Stern 層與擴(kuò)散層間的剪切平面上存在zeta電位。
zeta電位與膠體的分散穩(wěn)定性有密切的關(guān)系,當(dāng)zeta電位愈大時(shí),膠體粒子表面上的靜電荷愈多,當(dāng)粒子于水溶液中的zeta電位達(dá)到±25~30mV 以上時(shí),膠體有足夠的靜電排斥力克服粒子間的范德華力以維持膠體穩(wěn)定性。
Stern 雙電層模型
而膠體粒子表面的電荷來源有:
1)離子解離(Dissolution)
離子結(jié)晶型膠體粒子,組成離子具有不同的分解速率,產(chǎn)生表面電荷。離子與粒子表面和液相間的親和性不同,也是粒子表面帶電的原因之一。
2)離子化(Ionization)
當(dāng)膠體表面具有額外的強(qiáng)酸堿、弱酸堿等官能基,如:羧酸或胺基等時(shí),這此表面活性基會與溶液中的氫離子或氫氧根離子反應(yīng),產(chǎn)生如COO-、NH3+ 等使粒子表面帶負(fù)電或正電。
3)離子吸附(Ion adsorption)
膠體表面的凈電荷可由溶液中不同的離子吸附情形產(chǎn)生,導(dǎo)致粒子表面帶過多的正電荷或負(fù)電荷。
4)電子親和性(Electron affinities)
兩相之間的電子親和力不同時(shí),會產(chǎn)生接觸電位(contact potential),使電荷分離。
5)缺陷(Imperfection)
當(dāng)粒子內(nèi)部具有雜質(zhì)時(shí),例如:部份離子被同離子取代,不同價(jià)數(shù)的離子取代行為或者具有空位等缺陷均會使粒子表面帶有電荷。
6)偶極分子的吸附與取向性
膠體粒子表面吸附有偶極分子時(shí),雖不影響膠體凈電荷,然而將改變雙電層中的電荷分布,使得電荷分布不均。粒子表面帶電量將直接影響到膠體的穩(wěn)定性。膠體表面的電荷會將反離子(Counter-ion)吸引至粒子表面,并且排斥共同離子(Co-ion)。經(jīng)由靜電作用與熱運(yùn)動,反離子吸附于粒子表面,而過剩的共同離子則擴(kuò)散于溶液里,造成了雙電層的電荷分布。
二、DLVO理論
1940-1948年,由Deryagin、Landau、Verwey、Overbeek 建立膠體粒子相互接近時(shí)的能量變化及對膠體穩(wěn)定性影響的相關(guān)理論,簡稱DLVO理論。其理論主要描述膠體粒子間距與能量變化的關(guān)系,此作用能量是膠體雙電層重迭的電荷排斥能與范德華力加成下的結(jié)果。
下圖為DLVO示意圖,表示膠體粒子之間存在吸引力與排斥力,這兩種作用力的大小決定膠體溶液的穩(wěn)定性,粒子間的吸引力為主要作用,則粒子將產(chǎn)生團(tuán)聚;而排斥力大于吸引力的狀態(tài)下,則可避免粒子凝聚而保持膠體的穩(wěn)定性。
由DLVO曲線,當(dāng)粒子之間的距離愈來愈短,粒子首先會產(chǎn)生吸引力,若粒子彼此再持續(xù)靠近時(shí),則將使得粒子之間產(chǎn)生排斥力,而若粒子越過排斥能障,則會快速產(chǎn)生團(tuán)聚。因此為了使得膠體內(nèi)的粒子分散穩(wěn)定性提高,必須提高粒子間排斥力,以避免粒子間產(chǎn)生團(tuán)聚。
DLVO示意圖
2-1,膠體的穩(wěn)定機(jī)制
膠體粒子由于具有高表面能而傾向團(tuán)聚狀態(tài),為使膠體系統(tǒng)具有分散穩(wěn)定性,必須提高粒子間的排斥力。膠體間的穩(wěn)定機(jī)制一般可分為三種:
1)靜電穩(wěn)定機(jī)制(Electrostatic stabilization)
2)立體障礙(Steric hindrance)
3)靜電立體穩(wěn)定作用(Electrosteric stabilization),穩(wěn)定機(jī)制如下圖所示:
(a)靜電斥力、(b)立體障礙、(c)靜電立體障礙
靜電穩(wěn)定機(jī)制是利用粒子的表面電荷所造成的排斥力,當(dāng)粒子彼此因吸引力接近時(shí),造成膠體粒子的雙電層重迭,由于粒子表面帶同性電荷,因此產(chǎn)生排斥力。
然而靜電穩(wěn)定機(jī)制易受溶液系統(tǒng)中的電解質(zhì)濃度影響,當(dāng)溶液內(nèi)的電解質(zhì)濃度過高時(shí)將造成粒子表面雙電層壓縮,反而造成粒子的凝聚。立體障礙的穩(wěn)定機(jī)制是利用高分子吸附于膠體粒子表面,其作用會產(chǎn)生兩種不同的效應(yīng)提升粒子間的排斥力:
1)滲透壓效應(yīng)(Osmotic Effect)
是當(dāng)兩膠體粒子接近時(shí),高分子長鏈吸附于粒子表面或溶液內(nèi)的殘余高分子會介在粒子之間,此時(shí)粒子間的高分子濃度不斷提高將引起滲透壓的變化,周圍介質(zhì)進(jìn)入兩粒子之間,排開彼此距離,而達(dá)到分散穩(wěn)定的效果。
2)空間限制效應(yīng)(Volume restriction effect)
為吸附于粒上表面的高分子具有一定的空間阻礙,當(dāng)粒子距離縮短,由于高分子并無法穿透粒子,高分子將產(chǎn)生壓縮,致使彈性自由能上升,因而排開粒子,達(dá)到分散的效果。
相較于靜電穩(wěn)定機(jī)制,高分子立體障礙具有許多優(yōu)點(diǎn)。靜電穩(wěn)定機(jī)制極容易受環(huán)境影響而失去效果,無法應(yīng)用于高電解質(zhì)環(huán)境或是有機(jī)系統(tǒng)溶液。
然而高分子立體障礙對電解質(zhì)濃度相對不敏感,而且于水溶液或在有機(jī)溶劑中具有相等的效率,并且高分子立體障礙亦不因膠體固含量而影響效果。高分子吸附于膠體粒子表面時(shí),即使產(chǎn)生團(tuán)聚亦為軟團(tuán)聚,可簡單的破除團(tuán)聚現(xiàn)象,即使膠體粒子經(jīng)過干燥程序,仍然是可以再度分散于溶劑中。
因此立體障礙對于分散穩(wěn)定性的作用相對較靜電穩(wěn)定效應(yīng)高。靜電立體穩(wěn)定作用則是同時(shí)具有靜電穩(wěn)定機(jī)制與立體障礙,粒子表面所接枝的高分子上帶有電荷,使兩種不同穩(wěn)定機(jī)制加成,可讓膠體粒子具有良好的分散穩(wěn)定性。
評論