解決電源模塊散熱問(wèn)題的PCB設(shè)計(jì)
電源系統(tǒng)設(shè)計(jì)工程師總想在更小電路板面積上實(shí)現(xiàn)更高的功率密度,對(duì)需要支持來(lái)自耗電量越來(lái)越高的FPGA、ASIC和微處理器等大電流負(fù)載的數(shù)據(jù)中心服務(wù)器和LTE基站來(lái)說(shuō)尤其如此。為達(dá)到更高的輸出電流,多相系統(tǒng)的使用越來(lái)越多。為在更小電路板面積上達(dá)到更高的電流水平,系統(tǒng)設(shè)計(jì)工程師開(kāi)始棄用分立電源解決方案而選擇電源模塊。這是因?yàn)殡娫茨K為降低電源設(shè)計(jì)復(fù)雜性和解決與DC/DC轉(zhuǎn)換器有關(guān)的印刷電路板(PCB)布局問(wèn)題提供了一種受歡迎的選擇。
本文引用地址:http://www.ex-cimer.com/article/201808/387135.htm本文討論了一種使用通孔布置來(lái)最大化雙相電源模塊散熱性能的多層PCB布局方法。其中的電源模塊可以配置為兩路20A單相輸出或者單路40A雙相輸出。使用帶通孔的示例電路板設(shè)計(jì)來(lái)給電源模塊散熱,以達(dá)到更高的功率密度,使其無(wú)需散熱器或風(fēng)扇也能工作。
圖1:包括兩個(gè)20A輸出的ISL8240M電路
那么該電源模塊如何才能實(shí)現(xiàn)如此高的功率密度?圖1電路圖中顯示的電源模塊提供僅有8.5°C/W的極低熱阻θ,這是因?yàn)槠湟r底使用了銅材料。為給電源模塊散熱,電源模塊安裝在具有直接安裝特性的高效導(dǎo)熱電路板上。該多層電路板有一個(gè)頂層走線層(電源模板安裝于其上)和利用通孔連接至頂層的兩個(gè)內(nèi)埋銅平面。該結(jié)構(gòu)有非常高的導(dǎo)熱系數(shù)(低熱阻),使電源模塊的散熱很容易。
為理解這一現(xiàn)象,我們來(lái)分析一下ISL8240MEVAL4Z評(píng)估板的實(shí)現(xiàn)(圖2)。這是一個(gè)在四層電路板上支持雙路20A輸出的電源模塊評(píng)估板
圖2:ISL8240MEVAL4Z電源模塊評(píng)估板
該電路板有四個(gè)PCB層,標(biāo)稱(chēng)厚度為0.062英寸(±10%),并且采用層疊排列,如圖3所示。
圖3:ISL8240M電源模塊使用的四層0.062”電路板的層疊排列
該P(yáng)CB主要由FR4電路板材料和銅組成,另有少量焊料、鎳和金。表1列出了主要材料的導(dǎo)熱系數(shù)。
SAC305* 是最流行的無(wú)鉛焊料,由96.5%錫、3.0%銀和0.5%銅組成。 W = 瓦特,in = 英寸,C = 攝氏度,m = 米,K =開(kāi)氏度
我們使用式1 來(lái)確定材料的熱阻。
式1:計(jì)算材料的熱阻
為確定圖3中電路板頂部銅層的熱阻,我們?nèi)°~層的厚度(t)并除以導(dǎo)熱系數(shù)與截面積之積。為計(jì)算方便,我們使用1平方英寸作為截面積,這時(shí)A=B=1英寸。銅層的厚度為2.8密耳(0.0028英寸)。這是2盎司銅沉積在1平方英寸電路板區(qū)域的厚度。系數(shù)k是銅的W/(in-°C)系數(shù),其值等于9。因此,對(duì)于這1平方英寸2.8密耳銅的熱流,熱阻為0.0028/9=0.0003°C/W。我們可使用圖3顯示的每層尺寸和表1中的相應(yīng)k系數(shù),來(lái)計(jì)算每層1平方英寸電路板區(qū)域的熱阻。結(jié)果如圖4所示。
圖4:1平方英寸電路板層的熱阻
從這些數(shù)字,我們可知33.4密耳(t5)層的熱阻是最高的。圖4中的所有數(shù)字顯示了從頂層至底層的這四層1平方英寸電路板的總熱阻。如果我們添加一個(gè)從電路板頂層至底層的通孔連接會(huì)怎樣?我們來(lái)分析添加該通孔連接的情況。
電路板使用的通孔的成孔尺寸約為12密耳(0.012英寸)。制造該通孔時(shí)先鉆一個(gè)直徑為0.014英寸的孔,然后鍍銅,這會(huì)在孔內(nèi)側(cè)增加約1密耳(0.001英寸)厚的銅壁。該電路板還使用了ENIG電鍍工藝。這在銅外表面上增加約200微英寸鎳和約5微英寸金。我們?cè)谟?jì)算中忽略這些材料,只使用銅來(lái)確定通孔的熱阻。
評(píng)論