<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 電流型PWM控制器UC3844及其在微機(jī)電源中的應(yīng)用

          電流型PWM控制器UC3844及其在微機(jī)電源中的應(yīng)用

          作者: 時(shí)間:2018-08-28 來(lái)源:網(wǎng)絡(luò) 收藏

          針對(duì)電壓型脈寬調(diào)制器(PWM) 控制器只有電壓控制環(huán)、電流變化滯后電壓變化、系統(tǒng)響應(yīng)速度慢、穩(wěn)定性差等固有缺點(diǎn),介紹了既有電壓控制環(huán)、又有電流控制環(huán)的新型電流型PWM 控制器。分析了電流型PWM 控制器與電壓型PWM 控制器的控制原理,比較了二者之間的優(yōu)缺點(diǎn);介紹了電流型PWM 控制器 的工作原理,并應(yīng)用電流型PWM 控制器 設(shè)計(jì)了,指出了設(shè)計(jì)中應(yīng)該注意的問(wèn)題。結(jié)果表明,由電流型PWM 控制器構(gòu)成的具有良好的電壓調(diào)整率、負(fù)載調(diào)整率和系統(tǒng)穩(wěn)定性等優(yōu)點(diǎn)。

          本文引用地址:http://www.ex-cimer.com/article/201808/387823.htm

          是美國(guó)UNITRODE 公司生產(chǎn)的高性能電流型脈寬調(diào)制器(PWM) 控制器。早期的PWM 控制器是電壓控制型的,常用的電壓型PWM 控制器有TL494 、TL495 、SG3524 、SG3525 等。電壓型PWM 是指控制器按反饋電壓來(lái)調(diào)節(jié)輸出脈寬,電流型PWM 是指控制器按反饋電流來(lái)調(diào)節(jié)輸出脈寬。電流型PWM 是在脈寬比較器的輸入端,直接用流過(guò)輸出電感線圈電流的信號(hào)與誤差放大器輸出信號(hào)進(jìn)行比較,從而調(diào)節(jié)占空比,使輸出的電感峰值電流跟隨誤差電壓變化而變化。由于結(jié)構(gòu)上有電壓環(huán)、電流環(huán)雙環(huán)系統(tǒng),因此,無(wú)論開關(guān)電源的電壓調(diào)整率、負(fù)載調(diào)整率

          和瞬態(tài)響應(yīng)特性都有提高,是目前比較理想的新型PWM 控制器。

          1 電流型PWM 控制與電壓型PWM 控制原理及性能比較

          1. 1 電壓型PWM控制

          電壓型PWM 控制系統(tǒng)框圖如圖1 所示。電源輸出反饋電壓Uf與基準(zhǔn)電壓Ug 比較放大得到誤差電壓Ue,該誤差電壓再與鋸齒波發(fā)生器產(chǎn)生的鋸齒波信號(hào)進(jìn)行比較,產(chǎn)生占空比變化的矩形波驅(qū)動(dòng)信號(hào)。這種結(jié)構(gòu)屬于典型的單閉環(huán)系統(tǒng),缺點(diǎn)是控制過(guò)程中主電路的電流沒(méi)有參入輸出控制。由于電感的作用,電流滯后于電壓的變化,因而系統(tǒng)響應(yīng)速度慢,穩(wěn)定性差。

          圖1 電壓型PWM控制系統(tǒng)框圖

          1. 2 電流型PWM控制

          電流型PWM 正是針對(duì)電壓PWM 型的缺點(diǎn)發(fā)展起來(lái)的。它在原有的電壓環(huán)上增加了電流反饋環(huán)節(jié),構(gòu)成電壓電流雙閉環(huán)控制。內(nèi)環(huán)為電流控制環(huán),外環(huán)為電壓控制環(huán)。無(wú)論電流的變化,還是電壓的變化,都會(huì)使PWM 輸出脈沖占空比發(fā)生變化。這種控制方式可改善系統(tǒng)的電壓調(diào)整率,提高系統(tǒng)的瞬態(tài)響應(yīng)速度,增加系統(tǒng)的穩(wěn)定性。其控制系統(tǒng)框圖如圖2 所示。

          圖2 電流型PWM控制系統(tǒng)框圖

          1. 3 電流型PWM控制的優(yōu)點(diǎn)

          電壓調(diào)整率好。輸入電壓的變化立即引起電感電流的變化,電感電流的變化立即反映到電流控制回路而被抑制。不像電壓控制要經(jīng)過(guò)輸出電壓反饋到誤差放大器,然后再調(diào)節(jié)的復(fù)雜過(guò)程,所以響應(yīng)快。如果輸入電壓的變化是持續(xù)的,電壓反饋環(huán)也起作用,因而可以達(dá)到較高的線形調(diào)整率。 負(fù)載調(diào)整率好。由于電壓誤差放大器可專門用于控制占空比,以適應(yīng)負(fù)載變化造成的輸出電壓的變化,因而可大大改善負(fù)載調(diào)整率。 系統(tǒng)穩(wěn)定性好。從控制理論的角度講,電壓控制單閉環(huán)系統(tǒng)是一個(gè)無(wú)條件的二階穩(wěn)定系統(tǒng)。而電流控制雙閉環(huán)系統(tǒng)是一個(gè)無(wú)條件的一階穩(wěn)定系統(tǒng),系統(tǒng)穩(wěn)定性好。

          2 電流型PWM 控制芯片UC3844 的基本原理

          UC3844 是電流型單端輸出式PWM ,其最大占空比為50% ,啟動(dòng)電壓16V ,具有過(guò)壓保護(hù)和欠壓鎖定功能。當(dāng)工作電壓大于34V 時(shí),穩(wěn)壓管穩(wěn)壓,使內(nèi)部電路在小于34 電壓下可靠工作;當(dāng)輸入電壓低于10V 時(shí),芯片被鎖定,控制器停止工作 。其內(nèi)部框圖和引腳圖如圖3 所示。

          圖3 UC3844 內(nèi)部框圖及引腳圖

          UC3844 的工作原理是:反饋電壓和2.5 V 基準(zhǔn)電壓之差,經(jīng)誤差放大器E/A 放大后作為門限電壓,與反饋電流經(jīng)采樣后的電壓,一起送到電流感應(yīng)比較器。當(dāng)電流取樣電壓超過(guò)門限電壓后,比較器輸出高電平觸發(fā)RS 觸發(fā)器,然后經(jīng)或非門輸出低電平,關(guān)斷功率管,并保持這種狀態(tài)直至振蕩器輸出脈沖到觸發(fā)器和或非門為止。這段時(shí)間的長(zhǎng)短由振蕩器輸出脈沖寬度決定。PWM 信號(hào)的上升沿由振蕩器決定,下降沿由功率開關(guān)管電流和輸出電壓共同決定。反轉(zhuǎn)觸發(fā)器限制PWM 的占空比調(diào)節(jié)范圍在0~50 %之內(nèi)。

          UC3844 的振蕩工作頻率由引腳4 與引腳8 之間所接定時(shí)電阻RT、腳4 與地之間所接定時(shí)電容CT 設(shè)定。計(jì)算公式為: f = 1/T = RTCT/0.55 = 1.72RTCT。

          引腳2 是電壓反饋端,將取樣電壓加至E/A 誤差放大器的反相輸入端,與同向輸入端的2.5 V 基準(zhǔn)電壓進(jìn)行比較,產(chǎn)生誤差電壓。利用內(nèi)部E/A 誤差放大器可以構(gòu)成電壓環(huán)。引腳3 是電流反饋端,電流取樣電壓由引腳3 輸入到電流比較器。當(dāng)引腳3 電壓大于1V 時(shí),輸出關(guān)閉。利用引腳3 和電流比較器可以構(gòu)成電流環(huán)。引腳1 是補(bǔ)償端,外接阻容元件以補(bǔ)償誤差放大器的頻率特性。引腳8 為5V 基準(zhǔn)電壓,帶載能力50mA。引腳6 為推挽輸出端,有拉、灌電流的能力。引腳5 為公共端。引腳7 為集成塊工作電源端,電壓范圍為8V~40V。


          上一頁(yè) 1 2 下一頁(yè)

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();