開(kāi)關(guān)電源的建模和環(huán)路補(bǔ)償設(shè)計(jì)(1):小信號(hào)建模的基本概念和方法(一)
圖 8:將降壓型轉(zhuǎn)換器變成平均式、AC 小信號(hào)線性電路
以圖 8 所示線性電路為基礎(chǔ),既然控制信號(hào)是占空比 d,輸出信號(hào)是 vOUT,那么在頻率域,該降壓型轉(zhuǎn)換器就可以用占空比至輸出的轉(zhuǎn)移函數(shù) Gdv(s) 來(lái)描述:
函數(shù) Gdv(s) 顯示,該降壓型轉(zhuǎn)換器的功率級(jí)是一個(gè)二階系統(tǒng),在頻率域有兩個(gè)極點(diǎn)和一個(gè)零點(diǎn)。零點(diǎn) sZ_ESR 由輸出電容器 C 及其 ESR rC 產(chǎn)生。諧振雙極點(diǎn)由輸出濾波器電感器 L 和電容器 C 產(chǎn)生。
既然極點(diǎn)和零點(diǎn)頻率是輸出電容器及其 ESR 的函數(shù),那么函數(shù) Gdv(s) 的波德圖隨所選擇電源輸出電容器的不同而變化,如圖 9 所示。輸出電容器的選擇對(duì)該降壓型轉(zhuǎn)換器功率級(jí)的小信號(hào)特性影響很大。如果該電源使用小型輸出電容或 ESR 非常低的輸出電容器,那么 ESR 零點(diǎn)頻率就可能遠(yuǎn)遠(yuǎn)高于諧振極點(diǎn)頻率。功率級(jí)相位延遲可能接近 –180°。結(jié)果,當(dāng)負(fù)壓反饋環(huán)路閉合時(shí),可能很難補(bǔ)償該環(huán)路。
圖 9:COUT 電容器變化導(dǎo)致功率級(jí) Gdv(s) 相位顯著變化
升壓型轉(zhuǎn)換器的小信號(hào)模型
利用同樣的 3 端子 PWM 開(kāi)關(guān)單元平均式小信號(hào)建模方法,也可以為升壓型轉(zhuǎn)換器建模。圖 10 顯示了怎樣為升壓型轉(zhuǎn)換器建模,并將其轉(zhuǎn)換為線性 AC 小信號(hào)模型電路。
圖 10:升壓型轉(zhuǎn)換器的 AC 小信號(hào)建模電路
升壓型轉(zhuǎn)換器功率級(jí)的轉(zhuǎn)移函數(shù) Gdv(s) 可從等式 5 中得出。它也是一個(gè)二階系統(tǒng),具有 L/C 諧振。與降壓型轉(zhuǎn)換器不同,升壓型轉(zhuǎn)換器除了 COUT ESR 零點(diǎn),還有一個(gè)右半平面零點(diǎn) (RHPZ) 。該 RHPZ 導(dǎo)致增益升高,但是相位減小 (變負(fù))。等式 6 也顯示,這個(gè) RHPZ 隨占空比和負(fù)載電阻不同而變化。既然占空比是 VIN 的函數(shù),那么升壓型轉(zhuǎn)換器功率級(jí)的轉(zhuǎn)移函數(shù) Gdv(s) 就隨 VIN和負(fù)載電流而變。在低 VIN 和大負(fù)載 IOUT_MAX時(shí),RHPZ 位于最低頻率處,并導(dǎo)致顯著的相位滯后。這就使得難以設(shè)計(jì)帶寬很大的升壓型轉(zhuǎn)換器。作為一個(gè)一般的設(shè)計(jì)原則,為了確保環(huán)路穩(wěn)定性,人們?cè)O(shè)計(jì)升壓型轉(zhuǎn)換器時(shí),限定其帶寬低于其最低 RHPZ 頻率的 1/10。其他幾種拓?fù)?,例如正至?fù)降壓 / 升壓、反激式 (隔離型降壓 / 升壓)、SEPIC 和 CUK 轉(zhuǎn)換器,所有都存在不想要的 RHPZ,都不能設(shè)計(jì)成帶寬很大、瞬態(tài)響應(yīng)很快的解決方案。
圖 11:升壓型轉(zhuǎn)換器功率級(jí)小信號(hào)占空比至 VO 轉(zhuǎn)移函數(shù)隨 VIN 和負(fù)載而改變
評(píng)論